Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Conserv Biol ; : e14301, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38801276

RESUMO

People often modify the shoreline to mitigate erosion and protect property from storm impacts. The 2 main approaches to modification are gray infrastructure (e.g., bulkheads and seawalls) and natural or green infrastructure (NI) (e.g., living shorelines). Gray infrastructure is still more often used for coastal protection than NI, despite having more detrimental effects on ecosystem parameters, such as biodiversity. We assessed the impact of gray infrastructure on biodiversity and whether the adoption of NI can mitigate its loss. We examined the literature to quantify the relationship of gray infrastructure and NI to biodiversity and developed a model with temporal geospatial data on ecosystem distribution and shoreline modification to project future shoreline modification for our study location, coastal Georgia (United States). We applied the literature-derived empirical relationships of infrastructure effects on biodiversity to the shoreline modification projections to predict change in biodiversity under different NI versus gray infrastructure scenarios. For our study area, which is dominated by marshes and use of gray infrastructure, when just under half of all new coastal infrastructure was to be NI, previous losses of biodiversity from gray infrastructure could be mitigated by 2100 (net change of biodiversity of +0.14%, 95% confidence interval -0.10% to +0.39%). As biodiversity continues to decline from human impacts, it is increasingly imperative to minimize negative impacts when possible. We therefore suggest policy and the permitting process be changed to promote the adoption of NI.


Cuantificación del impacto de la futura modificación de la costa sobre la biodiversidad en un estudio de caso de la costa de Georgia, Estados Unidos Resumen Las personas modifican con frecuencia la costa para mitigar la erosión o proteger su propiedad del impacto de las tormentas. Los dos enfoques principales para la modificación son la infraestructura gris (p. ej.: mamparos y malecones) y la infraestructura verde o natural (IN) (p.ej.: costas vivientes). La infraestructura gris es más común que la IN, a pesar de que tiene efectos dañinos sobre los parámetros ambientales, como la biodiversidad. Evaluamos el impacto de la infraestructura gris sobre la biodiversidad y si la adopción de la IN puede mitigar su pérdida. Analizamos la literatura para cuantificar la relación de la infraestructura gris y la IN con la biodiversidad. También desarrollamos un modelo con datos geoespaciales temporales sobre la distribución de los ecosistemas y la modificación de la costa para proyectar la modificación costera en el futuro en nuestra localidad de estudio: la costa de Georgia, Estados Unidos. Aplicamos las relaciones empíricas derivadas de la literatura de los efectos de la infraestructura sobre la biodiversidad a las proyecciones de modificación de la costa para predecir el cambio en la biodiversidad bajo diferentes escenarios de infraestructura gris versus IN. En nuestra área de estudio, que está dominada por marismas y usa infraestructura gris, cuando un poco menos de la mitad de toda la infraestructura costera nueva debería ser IN, las pérdidas previas de biodiversidad a partir de la infraestructura gris podrían mitigarse para 2100 (cambio neto de la biodiversidad de +0.14%, 95% intervalo de confianza ­0.10% a +0.39%). Conforme la biodiversidad siga en declive por el impacto humano, cada vez es más imperativo minimizar el impacto negativo cuando sea posible. Por lo tanto, sugerimos que se modifiquen las políticas y el proceso de permisos para promover la adopción de la IN.

2.
Proc Natl Acad Sci U S A ; 117(24): 13670-13679, 2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32471953

RESUMO

Acute myeloid leukemia (AML) is a deadly hematologic malignancy with poor prognosis, particularly in the elderly. Even among individuals with favorable-risk disease, approximately half will relapse with conventional therapy. In this clinical circumstance, the determinants of relapse are unclear, and there are no therapeutic interventions that can prevent recurrent disease. Mutations in the transcription factor CEBPA are associated with favorable risk in AML. However, mutations in the growth factor receptor CSF3R are commonly co-occurrent in CEBPA mutant AML and are associated with an increased risk of relapse. To develop therapeutic strategies for this disease subset, we performed medium-throughput drug screening on CEBPA/CSF3R mutant leukemia cells and identified sensitivity to inhibitors of lysine-specific demethylase 1 (LSD1). Treatment of CSF3R/CEBPA mutant leukemia cells with LSD1 inhibitors reactivates differentiation-associated enhancers driving immunophenotypic and morphologic differentiation. LSD1 inhibition is ineffective as monotherapy but demonstrates synergy with inhibitors of JAK/STAT signaling, doubling median survival in vivo. These results demonstrate that combined inhibition of JAK/STAT signaling and LSD1 is a promising therapeutic strategy for CEBPA/CSF3R mutant AML.


Assuntos
Proteínas Estimuladoras de Ligação a CCAAT/genética , Inibidores Enzimáticos/administração & dosagem , Histona Desmetilases/antagonistas & inibidores , Janus Quinase 2/antagonistas & inibidores , Leucemia Mieloide Aguda/tratamento farmacológico , Receptores de Fator Estimulador de Colônias/genética , Fatores de Transcrição STAT/metabolismo , Animais , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Feminino , Histona Desmetilases/genética , Histona Desmetilases/metabolismo , Humanos , Janus Quinase 2/genética , Janus Quinase 2/metabolismo , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Receptores de Fator Estimulador de Colônias/metabolismo , Fatores de Transcrição STAT/antagonistas & inibidores , Fatores de Transcrição STAT/genética , Transdução de Sinais/efeitos dos fármacos
3.
Environ Monit Assess ; 195(8): 982, 2023 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-37481757

RESUMO

Coastal communities are vulnerable to wave and storm surges during extreme events, highlighting the need to increase community resilience. The effectiveness of natural wetlands in attenuating waves is vital to designing strategies for protecting public safety. This study aimed to understand how vegetation attenuates waves and determine the best method for modeling vegetation's impact on wave dynamics. The researchers compared two different vegetation representations in numerical models, implicit and explicit, using SWAN and XBeach at varying spatial resolutions. The study focused on two marshes in the Chesapeake Bay, using field measurements to investigate the accuracy of each method in representing wave attenuation by vegetation and the implications of explicitly representing average characteristics of one vegetation species on a regional level. Results showed that explicit modeling using average vegetation characteristics provided more accurate results than the implicit model, which only showed wave attenuation due to topography. The finer scale resolution and site-specific vegetation characteristics further improved the accuracy of wave attenuation observed. Understanding the trade-offs between different vegetation representations in numerical models is essential to accurately represent wave attenuation and design effective protection strategies for coastal communities.


Assuntos
Baías , Monitoramento Ambiental , Áreas Alagadas
4.
Environ Monit Assess ; 195(12): 1487, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37973636

RESUMO

Sea level rise (SLR) is the most significant climate change-related threat to coastal wetlands, driving major transformations in coastal regions through marsh migration. Landscape transformations due to marsh migration are manifested in terms of horizontal and vertical changes in land cover and elevation, respectively. These processes will have an impact on saltmarsh wave attenuation that is yet to be explored. This study stands as a comprehensive analysis of spatially distributed wave attenuation by vegetation in the context of a changing climate. Our results show that: i) changes in saltmarsh cover have little to no effect on the attenuation of floods, while ii) changes in elevation can significantly reduce flood extents and water depths; iii) overland wave heights are directly influenced by marsh migration, although iv) being indirectly attenuated by the water depth limiting effects of water depth attenuation driven by changes in elevation; v) the influence of saltmarsh accretion on wave attenuation is largely evident near the marsh edge, where the increasing elevations can drive major wave energy losses via wave breaking. Lastly, vi) considering the synergy between SLR, marsh migration, and changes in elevation results in significantly more wave attenuation than considering the eustatic effects of SLR and/or horizontal marsh migration alone, and therefore should be adopted in future studies.


Assuntos
Elevação do Nível do Mar , Áreas Alagadas , Monitoramento Ambiental , Mudança Climática , Água , Ecossistema
5.
Proc Natl Acad Sci U S A ; 115(18): E4179-E4188, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29581250

RESUMO

Medical castration that interferes with androgen receptor (AR) function is the principal treatment for advanced prostate cancer. However, clinical progression is universal, and tumors with AR-independent resistance mechanisms appear to be increasing in frequency. Consequently, there is an urgent need to develop new treatments targeting molecular pathways enriched in lethal prostate cancer. Lysine-specific demethylase 1 (LSD1) is a histone demethylase and an important regulator of gene expression. Here, we show that LSD1 promotes the survival of prostate cancer cells, including those that are castration-resistant, independently of its demethylase function and of the AR. Importantly, this effect is explained in part by activation of a lethal prostate cancer gene network in collaboration with LSD1's binding protein, ZNF217. Finally, that a small-molecule LSD1 inhibitor-SP-2509-blocks important demethylase-independent functions and suppresses castration-resistant prostate cancer cell viability demonstrates the potential of LSD1 inhibition in this disease.


Assuntos
Redes Reguladoras de Genes , Histona Desmetilases/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias de Próstata Resistentes à Castração/enzimologia , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Histona Desmetilases/antagonistas & inibidores , Histona Desmetilases/genética , Humanos , Hidrazinas/farmacologia , Masculino , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/genética , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/patologia , Sulfonamidas/farmacologia , Transativadores/genética , Transativadores/metabolismo
6.
PLoS Genet ; 10(5): e1004321, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24810760

RESUMO

Understanding the molecular mechanisms of ultraviolet (UV) induced melanoma formation is becoming crucial with more reported cases each year. Expression of type II nuclear receptor Retinoid-X-Receptor α (RXRα) is lost during melanoma progression in humans. Here, we observed that in mice with melanocyte-specific ablation of RXRα and RXRß, melanocytes attract fewer IFN-γ secreting immune cells than in wild-type mice following acute UVR exposure, via altered expression of several chemoattractive and chemorepulsive chemokines/cytokines. Reduced IFN-γ in the microenvironment alters UVR-induced apoptosis, and due to this, the survival of surrounding dermal fibroblasts is significantly decreased in mice lacking RXRα/ß. Interestingly, post-UVR survival of the melanocytes themselves is enhanced in the absence of RXRα/ß. Loss of RXRs α/ß specifically in the melanocytes results in an endogenous shift in homeostasis of pro- and anti-apoptotic genes in these cells and enhances their survival compared to the wild type melanocytes. Therefore, RXRs modulate post-UVR survival of dermal fibroblasts in a "non-cell autonomous" manner, underscoring their role in immune surveillance, while independently mediating post-UVR melanocyte survival in a "cell autonomous" manner. Our results emphasize a novel immunomodulatory role of melanocytes in controlling survival of neighboring cell types besides controlling their own, and identifies RXRs as potential targets for therapy against UV induced melanoma.


Assuntos
Ciclo Celular/efeitos da radiação , Imunidade Inata/fisiologia , Melanócitos/fisiologia , Receptor X Retinoide alfa/fisiologia , Receptor X Retinoide beta/fisiologia , Raios Ultravioleta , Animais , Melanócitos/efeitos da radiação , Camundongos , Camundongos Transgênicos , Receptor X Retinoide alfa/genética , Receptor X Retinoide beta/genética
7.
Invest New Drugs ; 34(1): 24-40, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26563191

RESUMO

Coibamide A is a cytotoxic lariat depsipeptide isolated from a rare cyanobacterium found within the marine reserve of Coiba National Park, Panama. Earlier testing of coibamide A in the National Cancer Institute in vitro 60 human tumor cell line panel (NCI-60) revealed potent anti-proliferative activity and a unique selectivity profile, potentially reflecting a new target or mechanism of action. In the present study we evaluated the antitumor activity of coibamide A in several functional cell-based assays and in vivo. U87-MG and SF-295 glioblastoma cells showed reduced migratory and invasive capacity and underwent G1 cell cycle arrest as, likely indirect, consequences of treatment. Coibamide A inhibited extracellular VEGFA secreted from U87-MG glioblastoma and MDA-MB-231 breast cancer cells with low nM potency, attenuated proliferation and migration of normal human umbilical vein endothelial cells (HUVECs) and selectively decreased expression of vascular endothelial growth factor receptor 2 (VEGFR2). We report that coibamide A retains potent antitumor properties in a nude mouse xenograft model of glioblastoma; established subcutaneous U87-MG tumors failed to grow for up to 28 days in response to 0.3 mg/Kg doses of coibamide A. However, the natural product was also associated with varied patterns of weight loss and thus targeted delivery and/or medicinal chemistry approaches will almost certainly be required to improve the toxicity profile of this unusual macrocycle. Finally, similarities between coibamide A- and apratoxin A-induced changes in cell morphology, decreases in VEGFR2 expression and macroautophagy signaling in HUVECs raise the possibility that both cyanobacterial natural products share a common mechanism of action.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Depsipeptídeos/farmacologia , Glioblastoma/tratamento farmacológico , Animais , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Feminino , Glioblastoma/patologia , Células Endoteliais da Veia Umbilical Humana , Humanos , Camundongos , Camundongos Nus , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Photochem Photobiol Sci ; 13(3): 531-40, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24407555

RESUMO

Grp1-associated scaffold protein (Grasp), the product of a retinoic acid-induced gene in P19 embryonal carcinoma cells, is expressed primarily in brain, heart, and lung of the mouse. We report herein that Grasp transcripts are also found in mouse skin in which the Grasp gene is robustly induced following acute ultraviolet-B (UVB) exposure. Grasp(-/-) mice were found to exhibit delayed epidermal proliferation and a blunted apoptotic response after acute UVB exposure. Immunohistochemical analyses revealed that the nuclear residence time of the tumor suppressor protein p53 was reduced in Grasp(-/-) mice after UVB exposure. Taken together, our results suggest that a physiological role of Grasp may be to regulate skin homeostasis after UVB exposure, potentially by influencing p53-mediated apoptotic responses in skin.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas de Membrana/metabolismo , Fenômenos Fisiológicos da Pele/efeitos da radiação , Pele/efeitos da radiação , Animais , Apoptose/fisiologia , Apoptose/efeitos da radiação , Proteínas de Transporte/genética , Núcleo Celular/fisiologia , Núcleo Celular/efeitos da radiação , Proliferação de Células/efeitos da radiação , Células Cultivadas , Derme/fisiologia , Derme/efeitos da radiação , Epiderme/patologia , Epiderme/fisiologia , Epiderme/efeitos da radiação , Fibroblastos/fisiologia , Fibroblastos/efeitos da radiação , Homeostase/fisiologia , Homeostase/efeitos da radiação , Peptídeos e Proteínas de Sinalização Intracelular , Masculino , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína Supressora de Tumor p53/metabolismo , Raios Ultravioleta
9.
iScience ; 27(4): 109576, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38638836

RESUMO

AML is characterized by mutations in genes associated with growth regulation such as internal tandem duplications (ITD) in the receptor kinase FLT3. Inhibitors targeting FLT3 (FLT3i) are being used to treat patients with FLT3-ITD+ but most relapse and become resistant. To elucidate the resistance mechanism, we compared the gene regulatory networks (GRNs) of leukemic cells from patients before and after relapse, which revealed that the GRNs of drug-responsive patients were altered by rewiring their AP-1-RUNX1 axis. Moreover, FLT3i induces the upregulation of signaling genes, and we show that multiple cytokines, including interleukin-3 (IL-3), can overcome FLT3 inhibition and send cells back into cycle. FLT3i leads to loss of AP-1 and RUNX1 chromatin binding, which is counteracted by IL-3. However, cytokine-mediated drug resistance can be overcome by a pan-RAS inhibitor. We show that cytokines instruct AML growth via the transcriptional regulators AP-1 and RUNX1 and that pan-RAS drugs bypass this barrier.

10.
Nat Commun ; 15(1): 1359, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38355578

RESUMO

Acute Myeloid Leukemia (AML) is caused by multiple mutations which dysregulate growth and differentiation of myeloid cells. Cells adopt different gene regulatory networks specific to individual mutations, maintaining a rapidly proliferating blast cell population with fatal consequences for the patient if not treated. The most common treatment option is still chemotherapy which targets such cells. However, patients harbour a population of quiescent leukemic stem cells (LSCs) which can emerge from quiescence to trigger relapse after therapy. The processes that allow such cells to re-grow remain unknown. Here, we examine the well characterised t(8;21) AML sub-type as a model to address this question. Using four primary AML samples and a novel t(8;21) patient-derived xenograft model, we show that t(8;21) LSCs aberrantly activate the VEGF and IL-5 signalling pathways. Both pathways operate within a regulatory circuit consisting of the driver oncoprotein RUNX1::ETO and an AP-1/GATA2 axis allowing LSCs to re-enter the cell cycle while preserving self-renewal capacity.


Assuntos
Leucemia Mieloide Aguda , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Mutação , Células-Tronco/metabolismo , Células-Tronco Neoplásicas/metabolismo
11.
bioRxiv ; 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37503022

RESUMO

AML is a heterogenous disease caused by different mutations. We have previously shown that each mutational sub-type develops its specific gene regulatory network (GRN) with transcription factors interacting with multiple gene modules, many of which are transcription factor genes themselves. Here we hypothesized that highly connected nodes within such networks comprise crucial regulators of AML maintenance. We tested this hypothesis using FLT3-ITD mutated AML as a model and conducted an shRNA drop-out screen informed by this analysis. We show that AML-specific GRNs predict identifying crucial regulatory modules required for AML but not normal cellular growth. Furthermore, our work shows that all modules are highly connected and regulate each other. The careful multi-omic analysis of the role of one (RUNX1) module by shRNA and chemical inhibition shows that this transcription factor and its target genes stabilize the GRN of FLT3-ITD AML and that its removal leads to GRN collapse and cell death.

12.
Cell Rep ; 42(12): 113568, 2023 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-38104314

RESUMO

Acute myeloid leukemia (AML) is a heterogeneous disease caused by different mutations. Previously, we showed that each mutational subtype develops its specific gene regulatory network (GRN) with transcription factors interacting within multiple gene modules, many of which are transcription factor genes themselves. Here, we hypothesize that highly connected nodes within such networks comprise crucial regulators of AML maintenance. We test this hypothesis using FLT3-ITD-mutated AML as a model and conduct an shRNA drop-out screen informed by this analysis. We show that AML-specific GRNs predict crucial regulatory modules required for AML growth. Furthermore, our work shows that all modules are highly connected and regulate each other. The careful multi-omic analysis of the role of one (RUNX1) module by shRNA and chemical inhibition shows that this transcription factor and its target genes stabilize the GRN of FLT3-ITD+ AML and that its removal leads to GRN collapse and cell death.


Assuntos
Redes Reguladoras de Genes , Leucemia Mieloide Aguda , Humanos , Regulon , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Mutação/genética , RNA Interferente Pequeno , Tirosina Quinase 3 Semelhante a fms/genética
13.
Leukemia ; 37(2): 478-487, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36526735

RESUMO

Mutations in the gene Additional Sex-Combs Like 1 (ASXL1) are recurrent in myeloid malignancies as well as the pre-malignant condition clonal hematopoiesis, where they are universally associated with poor prognosis. However, the role of ASXL1 in myeloid lineage maturation is incompletely described. To define the role of ASXL1 in myelopoiesis, we employed single cell RNA sequencing and a murine model of hematopoietic-specific Asxl1 deletion. In granulocyte progenitors, Asxl1 deletion leads to hyperactivation of MYC and a quantitative decrease in neutrophil production. This loss of granulocyte production was not accompanied by significant changes in the landscape of covalent histone modifications. However, Asxl1 deletion results in a decrease in RNAPII promoter-proximal pausing in granulocyte progenitors, indicative of a global increase in productive transcription. These results suggest that ASXL1 inhibits productive transcription in granulocyte progenitors, identifying a new role for this epigenetic regulator in myeloid development.


Assuntos
Síndromes Mielodisplásicas , RNA Polimerase II , Proteínas Repressoras , Animais , Humanos , Camundongos , Células Precursoras de Granulócitos/patologia , Mutação , Síndromes Mielodisplásicas/genética , Proteínas Repressoras/genética , RNA Polimerase II/genética , Fatores de Transcrição/genética
14.
Mol Cancer Res ; 21(7): 631-647, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-36976323

RESUMO

Mutations in Fms-like tyrosine kinase 3 (FLT3) are common drivers in acute myeloid leukemia (AML) yet FLT3 inhibitors only provide modest clinical benefit. Prior work has shown that inhibitors of lysine-specific demethylase 1 (LSD1) enhance kinase inhibitor activity in AML. Here we show that combined LSD1 and FLT3 inhibition induces synergistic cell death in FLT3-mutant AML. Multi-omic profiling revealed that the drug combination disrupts STAT5, LSD1, and GFI1 binding at the MYC blood superenhancer, suppressing superenhancer accessibility as well as MYC expression and activity. The drug combination simultaneously results in the accumulation of repressive H3K9me1 methylation, an LSD1 substrate, at MYC target genes. We validated these findings in 72 primary AML samples with the nearly every sample demonstrating synergistic responses to the drug combination. Collectively, these studies reveal how epigenetic therapies augment the activity of kinase inhibitors in FLT3-ITD (internal tandem duplication) AML. IMPLICATIONS: This work establishes the synergistic efficacy of combined FLT3 and LSD1 inhibition in FLT3-ITD AML by disrupting STAT5 and GFI1 binding at the MYC blood-specific superenhancer complex.


Assuntos
Leucemia Mieloide Aguda , Tirosina Quinase 3 Semelhante a fms , Humanos , Apoptose , Tirosina Quinase 3 Semelhante a fms/genética , Tirosina Quinase 3 Semelhante a fms/metabolismo , Histona Desmetilases/genética , Histona Desmetilases/metabolismo , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Mutação , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Fator de Transcrição STAT5/metabolismo
15.
Exp Hematol ; 111: 1-12, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35341804

RESUMO

The transcription factor RUNX1 is essential for correct hematopoietic development; in its absence in the germ line, blood stem cells are not formed. RUNX1 orchestrates dramatic changes in the chromatin landscape at the onset of stem cell formation, which set the stage for both stem self-renewal and further differentiation. However, once blood stem cells are formed, the mutation of the RUNX1 gene is not lethal but can lead to various hematopoietic defects and a predisposition to cancer. Here we summarize the current literature on inherited and acquired RUNX1 mutations, with a particular emphasis on mutations that alter the structure of the RUNX1 protein itself, and place these changes in the context of what is known about RUNX1 function. We also summarize which mutant RUNX1 proteins are actually expressed in cells and discuss the molecular mechanism underlying how such variants reprogram the epigenome setting stem cells on the path to malignancy.


Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core , Doenças Hematológicas , Cromatina/genética , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Doenças Hematológicas/genética , Hematopoese/genética , Humanos , Mutação
16.
Genome Biol ; 23(1): 144, 2022 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-35788238

RESUMO

Genome-wide mapping of histone modifications is critical to understanding transcriptional regulation. CUT&Tag is a new method for profiling histone modifications, offering improved sensitivity and decreased cost compared with ChIP-seq. Here, we present GoPeaks, a peak calling method specifically designed for histone modification CUT&Tag data. We compare the performance of GoPeaks against commonly used peak calling algorithms to detect histone modifications that display a range of peak profiles and are frequently used in epigenetic studies. We find that GoPeaks robustly detects genome-wide histone modifications and, notably, identifies a substantial number of H3K27ac peaks with improved sensitivity compared to other standard algorithms.


Assuntos
Código das Histonas , Processamento de Proteína Pós-Traducional , Imunoprecipitação da Cromatina/métodos , Genoma , Análise de Sequência de DNA/métodos
17.
Leukemia ; 36(7): 1781-1793, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35590033

RESUMO

Responses to kinase-inhibitor therapy in AML are frequently short-lived due to the rapid development of resistance, limiting the clinical efficacy. Combination therapy may improve initial therapeutic responses by targeting pathways used by leukemia cells to escape monotherapy. Here we report that combined inhibition of KIT and lysine-specific demethylase 1 (LSD1) produces synergistic cell death in KIT-mutant AML cell lines and primary patient samples. This drug combination evicts both MYC and PU.1 from chromatin driving cell cycle exit. Using a live cell biosensor for AKT activity, we identify early adaptive changes in kinase signaling following KIT inhibition that are reversed with the addition of LSD1 inhibitor via modulation of the GSK3a/b axis. Multi-omic analyses, including scRNA-seq, ATAC-seq and CUT&Tag, confirm these mechanisms in primary KIT-mutant AML. Collectively, this work provides rational for a clinical trial to assess the efficacy of KIT and LSD1 inhibition in patients with KIT-mutant AML.


Assuntos
Histona Desmetilases , Leucemia Mieloide Aguda , Ciclo Celular , Linhagem Celular Tumoral , Redes Reguladoras de Genes , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo
18.
Front Immunol ; 12: 642807, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34108962

RESUMO

T cell immunological memory is established within days of an infection, but little is known about the in vivo changes in gene regulatory networks accounting for their ability to respond more efficiently to secondary infections. To decipher the timing and nature of immunological memory we performed genome-wide analyses of epigenetic and transcriptional changes in a mouse model generating antigen-specific T cells. Epigenetic reprogramming for Th differentiation and memory T cell formation was already established by the peak of the T cell response after 7 days. The Th memory T cell program was associated with a gain of open chromatin regions, enriched for RUNX, ETS and T-bet motifs, which remained stable for 56 days. The epigenetic programs for both effector memory, associated with T-bet, and central memory, associated with TCF-1, were established in parallel. Memory T cell-specific regulatory elements were associated with greatly enhanced inducible Th1-biased responses during secondary exposures to antigen. Furthermore, memory T cells responded in vivo to re-exposure to antigen by rapidly reprograming the entire ETS factor gene regulatory network, by suppressing Ets1 and activating Etv6 expression. These data show that gene regulatory networks are epigenetically reprogrammed towards memory during infection, and undergo substantial changes upon re-stimulation.


Assuntos
Antígenos/imunologia , Linfócitos T CD4-Positivos/imunologia , Epigênese Genética , Redes Reguladoras de Genes , Memória Imunológica , Animais , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Fatores de Tempo
19.
Clin Cancer Res ; 27(17): 4923-4936, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34145028

RESUMO

PURPOSE: Lineage plasticity in prostate cancer-most commonly exemplified by loss of androgen receptor (AR) signaling and a switch from a luminal to alternate differentiation program-is now recognized as a treatment resistance mechanism. Lineage plasticity is a spectrum, but neuroendocrine prostate cancer (NEPC) is the most virulent example. Currently, there are limited treatments for NEPC. Moreover, the incidence of treatment-emergent NEPC (t-NEPC) is increasing in the era of novel AR inhibitors. In contradistinction to de novo NEPC, t-NEPC tumors often express the AR, but AR's functional role in t-NEPC is unknown. Furthermore, targetable factors that promote t-NEPC lineage plasticity are also unclear. EXPERIMENTAL DESIGN: Using an integrative systems biology approach, we investigated enzalutamide-resistant t-NEPC cell lines and their parental, enzalutamide-sensitive adenocarcinoma cell lines. The AR is still expressed in these t-NEPC cells, enabling us to determine the role of the AR and other key factors in regulating t-NEPC lineage plasticity. RESULTS: AR inhibition accentuates lineage plasticity in t-NEPC cells-an effect not observed in parental, enzalutamide-sensitive adenocarcinoma cells. Induction of an AR-repressed, lineage plasticity program is dependent on activation of the transcription factor E2F1 in concert with the BET bromodomain chromatin reader BRD4. BET inhibition (BETi) blocks this E2F1/BRD4-regulated program and decreases growth of t-NEPC tumor models and a subset of t-NEPC patient tumors with high activity of this program in a BETi clinical trial. CONCLUSIONS: E2F1 and BRD4 are critical for activating an AR-repressed, t-NEPC lineage plasticity program. BETi is a promising approach to block this program.


Assuntos
Antagonistas de Receptores de Andrógenos/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Benzamidas/uso terapêutico , Carcinoma Neuroendócrino/tratamento farmacológico , Fator de Transcrição E2F1/efeitos dos fármacos , Fator de Transcrição E2F1/fisiologia , Nitrilas/uso terapêutico , Feniltioidantoína/uso terapêutico , Neoplasias da Próstata/tratamento farmacológico , Proteínas/antagonistas & inibidores , Linhagem Celular Tumoral , Humanos , Masculino
20.
Anal Biochem ; 399(1): 7-12, 2010 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-20026005

RESUMO

A simple and reliable continuous assay for measurement of alpha-mannosidase activity is described and demonstrated for analysis with two recombinant human enzymes using the new substrate resorufin alpha-d-mannopyranoside (Res-Man). The product of enzyme reaction, resorufin, exhibits fluorescence emission at 585 nm with excitation at 571 nm and has a pK(a) of 5.8, allowing continuous measurement of fluorescence turnover at or near physiological pH values for human lysosomal and Drosophila Golgi alpha-mannosidases. The assay performed using recombinant Drosophila Golgi alpha-mannosidase (dGMII) has been shown to give the kinetic parameters K(m) of 200 microM and V(max) of 11 nmol/min per nmol dGMII. Methods for performing the assay using several concentrations of the known alpha-mannosidase inhibitor swainsonine are also presented, demonstrating a potential for use of the assay as a simple method for high-throughput screening of inhibitors potentially useful in cancer treatment.


Assuntos
Corantes Fluorescentes/química , Fluorometria/métodos , Manosídeos/metabolismo , Oxazinas/metabolismo , alfa-Manosidase/metabolismo , Animais , Drosophila , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Complexo de Golgi/enzimologia , Ensaios de Triagem em Larga Escala , Humanos , Cinética , Lisossomos/enzimologia , Manosídeos/síntese química , Manosídeos/química , Oxazinas/síntese química , Oxazinas/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade por Substrato , Swainsonina/química , Swainsonina/farmacologia , alfa-Manosidase/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA