RESUMO
Although two-dose mRNA vaccination provides excellent protection against SARS-CoV-2, there is little information about vaccine efficacy against variants of concern (VOC) in individuals above eighty years of age1. Here we analysed immune responses following vaccination with the BNT162b2 mRNA vaccine2 in elderly participants and younger healthcare workers. Serum neutralization and levels of binding IgG or IgA after the first vaccine dose were lower in older individuals, with a marked drop in participants over eighty years old. Sera from participants above eighty showed lower neutralization potency against the B.1.1.7 (Alpha), B.1.351 (Beta) and P.1. (Gamma) VOC than against the wild-type virus and were more likely to lack any neutralization against VOC following the first dose. However, following the second dose, neutralization against VOC was detectable regardless of age. The frequency of SARS-CoV-2 spike-specific memory B cells was higher in elderly responders (whose serum showed neutralization activity) than in non-responders after the first dose. Elderly participants showed a clear reduction in somatic hypermutation of class-switched cells. The production of interferon-γ and interleukin-2 by SARS-CoV-2 spike-specific T cells was lower in older participants, and both cytokines were secreted primarily by CD4 T cells. We conclude that the elderly are a high-risk population and that specific measures to boost vaccine responses in this population are warranted, particularly where variants of concern are circulating.
Assuntos
Envelhecimento/imunologia , Vacinas contra COVID-19/imunologia , Imunidade , SARS-CoV-2/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/sangue , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Autoanticorpos/imunologia , Linfócitos B/citologia , Linfócitos B/imunologia , Linfócitos B/metabolismo , Vacina BNT162 , Vacinas contra COVID-19/administração & dosagem , Feminino , Pessoal de Saúde , Humanos , Imunidade/genética , Imunização Secundária , Imunoglobulina A/imunologia , Switching de Imunoglobulina , Imunoglobulina G/genética , Imunoglobulina G/imunologia , Memória Imunológica/imunologia , Inflamação/sangue , Inflamação/imunologia , Interferon gama/imunologia , Interleucina-2/imunologia , Masculino , Pessoa de Meia-Idade , Hipermutação Somática de Imunoglobulina , Glicoproteína da Espícula de Coronavírus/imunologia , Linfócitos T/imunologia , Vacinação , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/imunologia , Vacinas de mRNARESUMO
Transmission of SARS-CoV-2 is uncontrolled in many parts of the world; control is compounded in some areas by the higher transmission potential of the B.1.1.7 variant1, which has now been reported in 94 countries. It is unclear whether the response of the virus to vaccines against SARS-CoV-2 on the basis of the prototypic strain will be affected by the mutations found in B.1.1.7. Here we assess the immune responses of individuals after vaccination with the mRNA-based vaccine BNT162b22. We measured neutralizing antibody responses after the first and second immunizations using pseudoviruses that expressed the wild-type spike protein or a mutated spike protein that contained the eight amino acid changes found in the B.1.1.7 variant. The sera from individuals who received the vaccine exhibited a broad range of neutralizing titres against the wild-type pseudoviruses that were modestly reduced against the B.1.1.7 variant. This reduction was also evident in sera from some patients who had recovered from COVID-19. Decreased neutralization of the B.1.1.7 variant was also observed for monoclonal antibodies that target the N-terminal domain (9 out of 10) and the receptor-binding motif (5 out of 31), but not for monoclonal antibodies that recognize the receptor-binding domain that bind outside the receptor-binding motif. Introduction of the mutation that encodes the E484K substitution in the B.1.1.7 background to reflect a newly emerged variant of concern (VOC 202102/02) led to a more-substantial loss of neutralizing activity by vaccine-elicited antibodies and monoclonal antibodies (19 out of 31) compared with the loss of neutralizing activity conferred by the mutations in B.1.1.7 alone. The emergence of the E484K substitution in a B.1.1.7 background represents a threat to the efficacy of the BNT162b2 vaccine.
Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Vacinas contra COVID-19/imunologia , COVID-19/imunologia , COVID-19/terapia , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Vacinas Sintéticas/imunologia , Idoso , Idoso de 80 Anos ou mais , Enzima de Conversão de Angiotensina 2/metabolismo , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/isolamento & purificação , Anticorpos Neutralizantes/isolamento & purificação , Anticorpos Antivirais/isolamento & purificação , COVID-19/metabolismo , COVID-19/virologia , Feminino , Células HEK293 , Humanos , Evasão da Resposta Imune/genética , Evasão da Resposta Imune/imunologia , Imunização Passiva , Masculino , Pessoa de Meia-Idade , Modelos Moleculares , Mutação , Testes de Neutralização , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Vacinas Sintéticas/administração & dosagem , Soroterapia para COVID-19 , Vacinas de mRNARESUMO
The spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is critical for virus infection through the engagement of the human ACE2 protein1 and is a major antibody target. Here we show that chronic infection with SARS-CoV-2 leads to viral evolution and reduced sensitivity to neutralizing antibodies in an immunosuppressed individual treated with convalescent plasma, by generating whole-genome ultra-deep sequences for 23 time points that span 101 days and using in vitro techniques to characterize the mutations revealed by sequencing. There was little change in the overall structure of the viral population after two courses of remdesivir during the first 57 days. However, after convalescent plasma therapy, we observed large, dynamic shifts in the viral population, with the emergence of a dominant viral strain that contained a substitution (D796H) in the S2 subunit and a deletion (ΔH69/ΔV70) in the S1 N-terminal domain of the spike protein. As passively transferred serum antibodies diminished, viruses with the escape genotype were reduced in frequency, before returning during a final, unsuccessful course of convalescent plasma treatment. In vitro, the spike double mutant bearing both ΔH69/ΔV70 and D796H conferred modestly decreased sensitivity to convalescent plasma, while maintaining infectivity levels that were similar to the wild-type virus.The spike substitution mutant D796H appeared to be the main contributor to the decreased susceptibility to neutralizing antibodies, but this mutation resulted in an infectivity defect. The spike deletion mutant ΔH69/ΔV70 had a twofold higher level of infectivity than wild-type SARS-CoV-2, possibly compensating for the reduced infectivity of the D796H mutation. These data reveal strong selection on SARS-CoV-2 during convalescent plasma therapy, which is associated with the emergence of viral variants that show evidence of reduced susceptibility to neutralizing antibodies in immunosuppressed individuals.
Assuntos
Tratamento Farmacológico da COVID-19 , COVID-19/terapia , COVID-19/virologia , Evolução Molecular , Mutagênese/efeitos dos fármacos , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/genética , Monofosfato de Adenosina/análogos & derivados , Monofosfato de Adenosina/farmacologia , Monofosfato de Adenosina/uso terapêutico , Idoso , Alanina/análogos & derivados , Alanina/farmacologia , Alanina/uso terapêutico , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , COVID-19/imunologia , Doença Crônica , Genoma Viral/efeitos dos fármacos , Genoma Viral/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Evasão da Resposta Imune/efeitos dos fármacos , Evasão da Resposta Imune/genética , Evasão da Resposta Imune/imunologia , Tolerância Imunológica/efeitos dos fármacos , Tolerância Imunológica/imunologia , Imunização Passiva , Terapia de Imunossupressão , Masculino , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/imunologia , Mutação , Filogenia , SARS-CoV-2/imunologia , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Fatores de Tempo , Carga Viral/efeitos dos fármacos , Eliminação de Partículas Virais , Soroterapia para COVID-19RESUMO
The B.1.617.2 (Delta) variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was first identified in the state of Maharashtra in late 2020 and spread throughout India, outcompeting pre-existing lineages including B.1.617.1 (Kappa) and B.1.1.7 (Alpha)1. In vitro, B.1.617.2 is sixfold less sensitive to serum neutralizing antibodies from recovered individuals, and eightfold less sensitive to vaccine-elicited antibodies, compared with wild-type Wuhan-1 bearing D614G. Serum neutralizing titres against B.1.617.2 were lower in ChAdOx1 vaccinees than in BNT162b2 vaccinees. B.1.617.2 spike pseudotyped viruses exhibited compromised sensitivity to monoclonal antibodies to the receptor-binding domain and the amino-terminal domain. B.1.617.2 demonstrated higher replication efficiency than B.1.1.7 in both airway organoid and human airway epithelial systems, associated with B.1.617.2 spike being in a predominantly cleaved state compared with B.1.1.7 spike. The B.1.617.2 spike protein was able to mediate highly efficient syncytium formation that was less sensitive to inhibition by neutralizing antibody, compared with that of wild-type spike. We also observed that B.1.617.2 had higher replication and spike-mediated entry than B.1.617.1, potentially explaining the B.1.617.2 dominance. In an analysis of more than 130 SARS-CoV-2-infected health care workers across three centres in India during a period of mixed lineage circulation, we observed reduced ChAdOx1 vaccine effectiveness against B.1.617.2 relative to non-B.1.617.2, with the caveat of possible residual confounding. Compromised vaccine efficacy against the highly fit and immune-evasive B.1.617.2 Delta variant warrants continued infection control measures in the post-vaccination era.
Assuntos
Evasão da Resposta Imune , SARS-CoV-2/crescimento & desenvolvimento , SARS-CoV-2/imunologia , Replicação Viral/imunologia , Anticorpos Neutralizantes/imunologia , Vacinas contra COVID-19/imunologia , Fusão Celular , Linhagem Celular , Feminino , Pessoal de Saúde , Humanos , Índia , Cinética , Masculino , Glicoproteína da Espícula de Coronavírus/metabolismo , VacinaçãoRESUMO
Background: Human immunodeficiency virus type 1 (HIV-1) can replicate independently in extravascular compartments such as the central nervous system, resulting in either cerebrospinal fluid (CSF) discordance (viral load [VL] in CSF 0.5 log10 copies HIV-1 RNA greater than plasma VL) or escape (detection of HIV VL >50 copies/mL in CSF in patients with suppressed plasma VL <50 copies/mL). Both discordance and escape may be associated with neurological symptoms. We explored risk factors for CSF discordance and escape in patients presenting with diverse neurological problems. Methods: HIV-infected adult patients undergoing diagnostic lumbar puncture (LP) at a single center between 2011 and 2015 were included in the analysis. Clinical and neuroimaging variables associated with CSF discordance/escape were identified using multivariate logistic regression. Results: One hundred forty-six patients with a median age of 45.3 (interquartile range [IQR], 39.6-51.5) years underwent 163 LPs. Median CD4 count was 430 (IQR, 190-620) cells/µL. Twenty-four (14.7%) LPs in 22 patients showed CSF discordance, of which 10 (6.1%) LPs in 9 patients represented CSF escape. In multivariate analysis, both CSF discordance and escape were associated with diffuse white matter signal abnormalities (DWMSAs) on cranial magnetic resonance imaging (adjusted odds ratio, 10.3 [95% confidence interval {CI}, 2.3-45.0], P = .007 and 56.9 [95% CI, 4.0-882.8], P = .01, respectively). All 7 patients with CSF escape (10 LPs) had been diagnosed with HIV >7 years prior to LP, and 6 of 6 patients with resistance data had documented evidence of drug-resistant virus in plasma. Conclusions: Among patients presenting with diverse neurological problems, CSF discordance or escape was observed in 15%, with treatment-experienced patients dominating the escape group. DWMSAs in HIV-infected individuals presenting with neurological problems should raise suspicion of possible CSF discordance/escape.
Assuntos
Complexo AIDS Demência/patologia , Líquido Cefalorraquidiano/virologia , Infecções por HIV/complicações , HIV-1/isolamento & purificação , Imageamento por Ressonância Magnética , Carga Viral , Substância Branca/patologia , Complexo AIDS Demência/virologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Infecções por HIV/virologia , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Substância Branca/diagnóstico por imagem , Adulto JovemRESUMO
Suboptimal responses to a primary vaccination course have been reported in the elderly, but there is little information regarding the impact of age on responses to booster third doses. Here, we show that individuals 70 years or older (median age 73, range 70-75) who received a primary two-dose schedule with AZD1222 and booster third dose with mRNA vaccine achieve significantly lower neutralizing antibody responses against SARS-CoV-2 spike pseudotyped virus compared with those younger than 70 (median age 66, range 54-69) at 1 month post booster. Impaired neutralization potency and breadth post third dose in the elderly is associated with circulating "atypical" spike-specific B cells expressing CD11c and FCRL5. However, when considering individuals who received three doses of mRNA vaccine, we did not observe differences in neutralization or enrichment in atypical B cells. This work highlights the finding that AdV and mRNA COVID-19 vaccine formats differentially instruct the memory B cell response.
Assuntos
COVID-19 , Idoso , Humanos , COVID-19/prevenção & controle , Vacinas contra COVID-19 , ChAdOx1 nCoV-19 , SARS-CoV-2 , VacinaçãoRESUMO
Background: National lockdowns have led to significant interruption to children's education globally. In the Autumn term in 2020, school absence in England and Wales was almost five times higher than the same period in 2019. Transmission of SARS-CoV-2 in schools and ongoing interruption to education remains a concern. However, evaluation of rapid point of care (POC) polymerase chain reaction (PCR) testing in British schools has not been undertaken. Methods: This is a survey of secondary schools in England that implemented PCR-based rapid POC testing. The study aims to measure the prevalence of SARS-CoV-2 infection in schools, to assess the impact of this testing on school attendance and closures, and to describe schools experiences with testing. All schools utilised the SAMBA II SARS-CoV-2 testing platform. Results: 12 fee-paying secondary schools in England were included. Between September 1 st 2020 and December 16 th 2020, 697 on site rapid POC PCR tests were performed and 6.7% of these were positive for SARS-CoV-2 infection. There were five outbreaks in three schools during this time which were contained. Seven groups of close contacts within the school known as bubbles had to quarantine but there were no school closures. 84% of those tested were absent from school for less than one day whilst awaiting their test result. This potentially saved between 1047 and 1570 days off school in those testing negative compared to the NHS PCR laboratory test. Schools reported a positive impact of having a rapid testing platform as it allowed them to function as fully as possible during this pandemic. Conclusions: Rapid POC PCR testing platforms should be widely available and utilised in school settings. Reliable positive tests will prevent outbreaks and uncontrolled spread of infection within school settings. Reliable negative test results will reassure students, parents and staff and prevent disruption to education.
RESUMO
We report severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike ΔH69/V70 in multiple independent lineages, often occurring after acquisition of receptor binding motif replacements such as N439K and Y453F, known to increase binding affinity to the ACE2 receptor and confer antibody escape. In vitro, we show that, although ΔH69/V70 itself is not an antibody evasion mechanism, it increases infectivity associated with enhanced incorporation of cleaved spike into virions. ΔH69/V70 is able to partially rescue infectivity of spike proteins that have acquired N439K and Y453F escape mutations by increased spike incorporation. In addition, replacement of the H69 and V70 residues in the Alpha variant B.1.1.7 spike (where ΔH69/V70 occurs naturally) impairs spike incorporation and entry efficiency of the B.1.1.7 spike pseudotyped virus. Alpha variant B.1.1.7 spike mediates faster kinetics of cell-cell fusion than wild-type Wuhan-1 D614G, dependent on ΔH69/V70. Therefore, as ΔH69/V70 compensates for immune escape mutations that impair infectivity, continued surveillance for deletions with functional effects is warranted.
Assuntos
COVID-19/imunologia , COVID-19/virologia , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Linhagem Celular , Chlorocebus aethiops , Células HEK293 , Humanos , Evasão da Resposta Imune , Mutação , Pandemias , Filogenia , Ligação Proteica , Recidiva , SARS-CoV-2/imunologia , Células VeroRESUMO
Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) transmission is uncontrolled in many parts of the world, compounded in some areas by higher transmission potential of the B1.1.7 variant now seen in 50 countries. It is unclear whether responses to SARS-CoV-2 vaccines based on the prototypic strain will be impacted by mutations found in B.1.1.7. Here we assessed immune responses following vaccination with mRNA-based vaccine BNT162b2. We measured neutralising antibody responses following a single immunization using pseudoviruses expressing the wild-type Spike protein or the 8 amino acid mutations found in the B.1.1.7 spike protein. The vaccine sera exhibited a broad range of neutralising titres against the wild-type pseudoviruses that were modestly reduced against B.1.1.7 variant. This reduction was also evident in sera from some convalescent patients. Decreased B.1.1.7 neutralisation was also observed with monoclonal antibodies targeting the N-terminal domain (9 out of 10), the Receptor Binding Motif (RBM) (5 out of 31), but not in neutralising mAbs binding outside the RBM. Introduction of the E484K mutation in a B.1.1.7 background to reflect newly emerging viruses in the UK led to a more substantial loss of neutralising activity by vaccine-elicited antibodies and mAbs (19 out of 31) over that conferred by the B.1.1.7 mutations alone. E484K emergence on a B.1.1.7 background represents a threat to the vaccine BNT162b.
RESUMO
There is an urgent need for rapid SARS-CoV-2 testing in hospitals to limit nosocomial spread. We report an evaluation of point of care (POC) nucleic acid amplification testing (NAAT) in 149 participants with parallel combined nasal and throat swabbing for POC versus standard lab RT-PCR testing. Median time to result is 2.6 (IQR 2.3-4.8) versus 26.4 h (IQR 21.4-31.4, p < 0.001), with 32 (21.5%) positive and 117 (78.5%) negative. Cohen's κ correlation between tests is 0.96 (95% CI 0.91-1.00). When comparing nearly 1,000 tests pre- and post-implementation, the median time to definitive bed placement from admission is 23.4 (8.6-41.9) versus 17.1 h (9.0-28.8), p = 0.02. Mean length of stay on COVID-19 "holding" wards is 58.5 versus 29.9 h (p < 0.001). POC testing increases isolation room availability, avoids bed closures, allows discharge to care homes, and expedites access to hospital procedures. POC testing could mitigate the impact of COVID-19 on hospital systems.
Assuntos
Teste de Ácido Nucleico para COVID-19 , COVID-19/diagnóstico , Controle de Infecções/métodos , Testes Imediatos , SARS-CoV-2/isolamento & purificação , Adulto , Idoso , Teste de Ácido Nucleico para COVID-19/normas , Infecção Hospitalar/prevenção & controle , Feminino , Hospitalização , Humanos , Masculino , Pessoa de Meia-Idade , Testes Imediatos/normas , SARS-CoV-2/genéticaRESUMO
The gag gene is highly polymorphic across HIV-1 subtypes and contributes to susceptibility to protease inhibitors (PI), a critical class of antiretrovirals that will be used in up to 2 million individuals as second-line therapy in sub Saharan Africa by 2020. Given subtype C represents around half of all HIV-1 infections globally, we examined PI susceptibility in subtype C viruses from treatment-naïve individuals. PI susceptibility was measured in a single round infection assay of full-length, replication competent MJ4/gag chimeric viruses, encoding the gag gene and 142 nucleotides of pro derived from viruses in 20 patients in the Zambia-Emory HIV Research Project acute infection cohort. Ten-fold variation in susceptibility to PIs atazanavir and lopinavir was observed across 20 viruses, with EC50s ranging 0.71-6.95 nM for atazanvir and 0.64-8.54 nM for lopinavir. Ten amino acid residues in Gag correlated with lopinavir EC50 (p < 0.01), of which 380 K and 389I showed modest impacts on in vitro drug susceptibility. Finally a significant relationship between drug susceptibility and replication capacity was observed for atazanavir and lopinavir but not darunavir. Our findings demonstrate large variation in susceptibility of PI-naïve subtype C viruses that appears to correlate with replication efficiency and could impact clinical outcomes.