Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 216
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Annu Rev Biochem ; 86: 439-460, 2017 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-28141967

RESUMO

Telomerase is the essential reverse transcriptase required for linear chromosome maintenance in most eukaryotes. Telomerase supplements the tandem array of simple-sequence repeats at chromosome ends to compensate for the DNA erosion inherent in genome replication. The template for telomerase reverse transcriptase is within the RNA subunit of the ribonucleoprotein complex, which in cells contains additional telomerase holoenzyme proteins that assemble the active ribonucleoprotein and promote its function at telomeres. Telomerase is distinct among polymerases in its reiterative reuse of an internal template. The template is precisely defined, processively copied, and regenerated by release of single-stranded product DNA. New specificities of nucleic acid handling that underlie the catalytic cycle of repeat synthesis derive from both active site specialization and new motif elaborations in protein and RNA subunits. Studies of telomerase provide unique insights into cellular requirements for genome stability, tissue renewal, and tumorigenesis as well as new perspectives on dynamic ribonucleoprotein machines.


Assuntos
Replicação do DNA , DNA de Cadeia Simples/metabolismo , RNA/metabolismo , Ribonucleoproteínas/metabolismo , Telomerase/metabolismo , Telômero/enzimologia , Animais , Domínio Catalítico , DNA de Cadeia Simples/genética , Regulação da Expressão Gênica , Humanos , Repetições de Microssatélites , Conformação de Ácido Nucleico , Oxytricha/genética , Oxytricha/metabolismo , RNA/genética , Ribonucleoproteínas/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Telomerase/genética , Telômero/química , Tetrahymena thermophila/genética , Tetrahymena thermophila/metabolismo
2.
Nature ; 626(7997): 186-193, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38096901

RESUMO

The long interspersed element-1 (LINE-1, hereafter L1) retrotransposon has generated nearly one-third of the human genome and serves as an active source of genetic diversity and human disease1. L1 spreads through a mechanism termed target-primed reverse transcription, in which the encoded enzyme (ORF2p) nicks the target DNA to prime reverse transcription of its own or non-self RNAs2. Here we purified full-length L1 ORF2p and biochemically reconstituted robust target-primed reverse transcription with template RNA and target-site DNA. We report cryo-electron microscopy structures of the complete human L1 ORF2p bound to structured template RNAs and initiating cDNA synthesis. The template polyadenosine tract is recognized in a sequence-specific manner by five distinct domains. Among them, an RNA-binding domain bends the template backbone to allow engagement of an RNA hairpin stem with the L1 ORF2p C-terminal segment. Moreover, structure and biochemical reconstitutions demonstrate an unexpected target-site requirement: L1 ORF2p relies on upstream single-stranded DNA to position the adjacent duplex in the endonuclease active site for nicking of the longer DNA strand, with a single nick generating a staggered DNA break. Our research provides insights into the mechanism of ongoing transposition in the human genome and informs the engineering of retrotransposon proteins for gene therapy.


Assuntos
DNA Complementar , Elementos Nucleotídeos Longos e Dispersos , RNA , Retroelementos , Transcrição Reversa , Humanos , Microscopia Crioeletrônica , DNA Complementar/biossíntese , DNA Complementar/genética , Elementos Nucleotídeos Longos e Dispersos/genética , Retroelementos/genética , RNA/química , RNA/genética , RNA/metabolismo , Domínio Catalítico , Endonucleases/química , Endonucleases/metabolismo , Endonucleases/ultraestrutura , Terapia Genética , DNA Polimerase Dirigida por RNA/química , DNA Polimerase Dirigida por RNA/metabolismo , DNA Polimerase Dirigida por RNA/ultraestrutura , DNA de Cadeia Simples/metabolismo , Quebras de DNA
3.
Nature ; 593(7859): 449-453, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33883742

RESUMO

Telomerase adds telomeric repeats at chromosome ends to compensate for the telomere loss that is caused by incomplete genome end replication1. In humans, telomerase is upregulated during embryogenesis and in cancers, and mutations that compromise the function of telomerase result in disease2. A previous structure of human telomerase at a resolution of 8 Å revealed a vertebrate-specific composition and architecture3, comprising a catalytic core that is flexibly tethered to an H and ACA (hereafter, H/ACA) box ribonucleoprotein (RNP) lobe by telomerase RNA. High-resolution structural information is necessary to develop treatments that can effectively modulate telomerase activity as a therapeutic approach against cancers and disease. Here we used cryo-electron microscopy to determine the structure of human telomerase holoenzyme bound to telomeric DNA at sub-4 Å resolution, which reveals crucial DNA- and RNA-binding interfaces in the active site of telomerase as well as the locations of mutations that alter telomerase activity. We identified a histone H2A-H2B dimer within the holoenzyme that was bound to an essential telomerase RNA motif, which suggests a role for histones in the folding and function of telomerase RNA. Furthermore, this structure of a eukaryotic H/ACA RNP reveals the molecular recognition of conserved RNA and protein motifs, as well as interactions that are crucial for understanding the molecular pathology of many mutations that cause disease. Our findings provide the structural details of the assembly and active site of human telomerase, which paves the way for the development of therapeutic agents that target this enzyme.


Assuntos
Microscopia Crioeletrônica , DNA/química , DNA/ultraestrutura , Telomerase/química , Telomerase/ultraestrutura , Telômero , Sítios de Ligação , Domínio Catalítico , DNA/genética , DNA/metabolismo , Histonas/química , Histonas/metabolismo , Holoenzimas/química , Holoenzimas/metabolismo , Holoenzimas/ultraestrutura , Humanos , Modelos Moleculares , Mutação , Conformação de Ácido Nucleico , Motivos de Nucleotídeos , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , RNA/química , RNA/metabolismo , RNA/ultraestrutura , Ribonucleoproteínas/química , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Ribonucleoproteínas/ultraestrutura , Telomerase/metabolismo , Telômero/genética , Telômero/metabolismo , Telômero/ultraestrutura
4.
Nat Methods ; 20(11): 1704-1715, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37783882

RESUMO

Ribosome profiling has unveiled diverse regulation and perturbations of translation through a transcriptome-wide survey of ribosome occupancy, read out by sequencing of ribosome-protected messenger RNA fragments. Generation of ribosome footprints and their conversion into sequencing libraries is technically demanding and sensitive to biases that distort the representation of physiological ribosome occupancy. We address these challenges by producing ribosome footprints with P1 nuclease rather than RNase I and replacing RNA ligation with ordered two-template relay, a single-tube protocol for sequencing library preparation that incorporates adaptors by reverse transcription. Our streamlined approach reduced sequence bias and enhanced enrichment of ribosome footprints relative to ribosomal RNA. Furthermore, P1 nuclease preserved distinct juxtaposed ribosome complexes informative about yeast and human ribosome fates during translation initiation, stalling and termination. Our optimized methods for mRNA footprint generation and capture provide a richer translatome profile with low input and fewer technical challenges.


Assuntos
Biossíntese de Proteínas , Saccharomyces cerevisiae , Humanos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Perfil de Ribossomos , Ribossomos/genética , Ribossomos/metabolismo , Transcriptoma , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala/métodos
5.
Nucleic Acids Res ; 52(11): 6571-6585, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38499488

RESUMO

Eukaryotic retrotransposons encode a reverse transcriptase that binds RNA to template DNA synthesis. The ancestral non-long terminal repeat (non-LTR) retrotransposons encode a protein that performs target-primed reverse transcription (TPRT), in which the nicked genomic target site initiates complementary DNA (cDNA) synthesis directly into the genome. The best understood model system for biochemical studies of TPRT is the R2 protein from the silk moth Bombyx mori. The R2 protein selectively binds the 3' untranslated region of its encoding RNA as template for DNA insertion to its target site in 28S ribosomal DNA. Here, binding and TPRT assays define RNA contributions to RNA-protein interaction, template use for TPRT and the fidelity of template positioning for TPRT cDNA synthesis. We quantify both sequence and structure contributions to protein-RNA interaction. RNA determinants of binding affinity overlap but are not equivalent to RNA features required for TPRT and its fidelity of template positioning for full-length TPRT cDNA synthesis. Additionally, we show that a previously implicated RNA-binding protein surface of R2 protein makes RNA binding affinity dependent on the presence of two stem-loops. Our findings inform evolutionary relationships across R2 retrotransposon RNAs and are a step toward understanding the mechanism and template specificity of non-LTR retrotransposon mobility.


Assuntos
Bombyx , RNA , Retroelementos , Transcrição Reversa , Animais , Regiões 3' não Traduzidas , Sítios de Ligação , Bombyx/genética , Bombyx/metabolismo , DNA Complementar/genética , DNA Complementar/metabolismo , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Ligação Proteica , Retroelementos/genética , RNA/metabolismo , RNA/genética , RNA/química , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , DNA Polimerase Dirigida por RNA/metabolismo , DNA Polimerase Dirigida por RNA/genética
6.
J Virol ; 97(2): e0008923, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36700640

RESUMO

Viruses have brought humanity many challenges: respiratory infection, cancer, neurological impairment and immunosuppression to name a few. Virology research over the last 60+ years has responded to reduce this disease burden with vaccines and antivirals. Despite this long history, the COVID-19 pandemic has brought unprecedented attention to the field of virology. Some of this attention is focused on concern about the safe conduct of research with human pathogens. A small but vocal group of individuals has seized upon these concerns - conflating legitimate questions about safely conducting virus-related research with uncertainties over the origins of SARS-CoV-2. The result has fueled public confusion and, in many instances, ill-informed condemnation of virology. With this article, we seek to promote a return to rational discourse. We explain the use of gain-of-function approaches in science, discuss the possible origins of SARS-CoV-2 and outline current regulatory structures that provide oversight for virological research in the United States. By offering our expertise, we - a broad group of working virologists - seek to aid policy makers in navigating these controversial issues. Balanced, evidence-based discourse is essential to addressing public concern while maintaining and expanding much-needed research in virology.


Assuntos
Pesquisa , Virologia , Viroses , Humanos , COVID-19/prevenção & controle , Disseminação de Informação , Pandemias/prevenção & controle , Formulação de Políticas , Pesquisa/normas , Pesquisa/tendências , SARS-CoV-2 , Virologia/normas , Virologia/tendências , Viroses/prevenção & controle , Viroses/virologia , Vírus
7.
Nature ; 557(7704): 190-195, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29695869

RESUMO

The enzyme telomerase adds telomeric repeats to chromosome ends to balance the loss of telomeres during genome replication. Telomerase regulation has been implicated in cancer, other human diseases, and ageing, but progress towards clinical manipulation of telomerase has been hampered by the lack of structural data. Here we present the cryo-electron microscopy structure of the substrate-bound human telomerase holoenzyme at subnanometre resolution, showing two flexibly RNA-tethered lobes: the catalytic core with telomerase reverse transcriptase (TERT) and conserved motifs of telomerase RNA (hTR), and an H/ACA ribonucleoprotein (RNP). In the catalytic core, RNA encircles TERT, adopting a well-ordered tertiary structure with surprisingly limited protein-RNA interactions. The H/ACA RNP lobe comprises two sets of heterotetrameric H/ACA proteins and one Cajal body protein, TCAB1, representing a pioneering structure of a large eukaryotic family of ribosome and spliceosome biogenesis factors. Our findings provide a structural framework for understanding human telomerase disease mutations and represent an important step towards telomerase-related clinical therapeutics.


Assuntos
Microscopia Crioeletrônica , Telomerase/metabolismo , Telomerase/ultraestrutura , Domínio Catalítico , Holoenzimas/química , Holoenzimas/genética , Holoenzimas/metabolismo , Holoenzimas/ultraestrutura , Humanos , Modelos Moleculares , Chaperonas Moleculares , Mutação , Domínios Proteicos , RNA/química , RNA/metabolismo , RNA/ultraestrutura , Ribonucleoproteínas/química , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Ribonucleoproteínas/ultraestrutura , Especificidade por Substrato , Telomerase/química , Telomerase/genética
8.
Proc Natl Acad Sci U S A ; 118(42)2021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34649994

RESUMO

Selfish, non-long terminal repeat (non-LTR) retroelements and mobile group II introns encode reverse transcriptases (RTs) that can initiate DNA synthesis without substantial base pairing of primer and template. Biochemical characterization of these enzymes has been limited by recombinant expression challenges, hampering understanding of their properties and the possible exploitation of their properties for research and biotechnology. We investigated the activities of representative RTs using a modified non-LTR RT from Bombyx mori and a group II intron RT from Eubacterium rectale Only the non-LTR RT supported robust and serial template jumping, producing one complementary DNA (cDNA) from several templates each copied end to end. We also discovered an unexpected terminal deoxynucleotidyl transferase activity of the RTs that adds nucleotide(s) of choice to 3' ends of single- and/or double-stranded RNA or DNA. Combining these two types of activity with additional insights about nontemplated nucleotide additions to duplexed cDNA product, we developed a streamlined protocol for fusion of next-generation sequencing adaptors to both cDNA ends in a single RT reaction. When benchmarked using a reference pool of microRNAs (miRNAs), library production by Ordered Two-Template Relay (OTTR) using recombinant non-LTR retroelement RT outperformed all commercially available kits and rivaled the low bias of technically demanding home-brew protocols. We applied OTTR to inventory RNAs purified from extracellular vesicles, identifying miRNAs as well as myriad other noncoding RNAs (ncRNAs) and ncRNA fragments. Our results establish the utility of OTTR for automation-friendly, low-bias, end-to-end RNA sequence inventories of complex ncRNA samples.


Assuntos
RNA não Traduzido/genética , DNA Polimerase Dirigida por RNA/metabolismo , Retroelementos , Moldes Genéticos
9.
J Biol Chem ; 298(3): 101624, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35065960

RESUMO

Broad evolutionary expansion of polymerase families has enabled specialization of their activities for distinct cellular roles. In addition to template-complementary synthesis, many polymerases extend their duplex products by nontemplated nucleotide addition (NTA). This activity is exploited for laboratory strategies of cloning and sequencing nucleic acids and could have important biological function, although the latter has been challenging to test without separation-of-function mutations. Several retroelement and retroviral reverse transcriptases (RTs) support NTA and also template jumping, by which the RT performs continuous complementary DNA (cDNA) synthesis using physically separate templates. Previous studies that aimed to dissect the relationship between NTA and template jumping leave open questions about structural requirements for each activity and their interdependence. Here, we characterize the structural requirements for cDNA synthesis, NTA, template jumping, and the unique terminal transferase activity of Bombyx mori R2 non-long terminal repeat retroelement RT. With sequence alignments and structure modeling to guide mutagenesis, we generated enzyme variants across motifs generally conserved or specific to RT subgroups. Enzyme variants had diverse NTA profiles not correlated with other changes in cDNA synthesis activity or template jumping. Using these enzyme variants and panels of activity assay conditions, we show that template jumping requires NTA. However, template jumping by NTA-deficient enzymes can be rescued using primer duplex with a specific length of 3' overhang. Our findings clarify the relationship between NTA and template jumping as well as additional activities of non-long terminal repeat RTs, with implications for the specialization of RT biological functions and laboratory applications.


Assuntos
Bombyx , DNA Complementar , DNA Polimerase Dirigida por RNA , Retroelementos , Animais , Bombyx/metabolismo , DNA Complementar/biossíntese , DNA Complementar/química , DNA Complementar/genética , Humanos , DNA Polimerase Dirigida por RNA/metabolismo , Retroelementos/genética , Relação Estrutura-Atividade , Moldes Genéticos
10.
Nat Immunol ; 12(10): 975-83, 2011 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-21874023

RESUMO

APOBEC3G (A3G) is an intrinsic antiviral factor that inhibits the replication of human immunodeficiency virus (HIV) by deaminating cytidine residues to uridine. This causes guanosine-to-adenosine hypermutation in the opposite strand and results in inactivation of the virus. HIV counteracts A3G through the activity of viral infectivity factor (Vif), which promotes degradation of A3G. We report that viral protein R (Vpr), which interacts with a uracil glycosylase, also counteracted A3G by diminishing the incorporation of uridine. However, this process resulted in activation of the DNA-damage-response pathway and the expression of natural killer (NK) cell-activating ligands. Our results show that pathogen-induced deamination of cytidine and the DNA-damage response to virus-mediated repair of the incorporation of uridine enhance the recognition of HIV-infected cells by NK cells.


Assuntos
Citidina Desaminase/fisiologia , HIV/imunologia , Células Matadoras Naturais/imunologia , Linfócitos T/virologia , Desaminase APOBEC-3G , Células Cultivadas , Citotoxicidade Imunológica , Dano ao DNA , Produtos do Gene vpr/fisiologia , Humanos , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo , Uridina/metabolismo
11.
J Genet Couns ; 32(3): 635-645, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36660806

RESUMO

Implementation of genetic testing in healthcare increases, but access to, and number of, genetics providers remain scarce. This study analyzed the impact of genetic counselor (GC) involvement on frequency of documentation of pre- and post-test counseling of genetic testing between GCs and genetics providers (GPs), and GCs and non-genetics providers (NGPs). A retrospective chart review of 467 charts from patients who had genetic testing ordered between July 2016 and June 2018 at a primarily pediatric institution was conducted. GCs were involved for 223 charts (GC group), and not involved for 244 (non-GC group). The non-GC group was further stratified into patient charts with Genetics Providers (GP group) (n = 100) involved and those with Non-Genetics Providers (NGP group) (n = 144) involved. Categorical, binomial, pre-test variables (counseling, test description, results possibilities, insurance coverage, and cost) and categorical, binomial, post-test variables (results disclosure, family testing recommendations, recurrence risk, and provided resources) were collected and compared using Fisher's exact test (p < 0.005). With the exception of test description, documentation for all variables occurred more frequently in the GC group compared to the NGP group (all p < 0.001). Documentation for the majority of variables also occurred more frequently in the GC group compared to the GP group (p < 0.005), with the exceptions of overall pre-test counseling and family testing recommendations. GC involvement was associated with increased documentation of most pre- and post-test genetic counseling variables. With increased emphasis placed on transparency, accurateness, and access for patients of the EMR, in part due to the passage of the CARES Act, documentation should reflect the content of counseling provided. The cause of the documentation discrepancy identified may have differing effects on patient care and provider education.


Assuntos
Conselheiros , Humanos , Criança , Estudos Retrospectivos , Testes Genéticos/métodos , Aconselhamento Genético/psicologia , Aconselhamento
12.
Proc Natl Acad Sci U S A ; 117(38): 23835-23846, 2020 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-32900948

RESUMO

Nef is an HIV-encoded accessory protein that enhances pathogenicity by down-regulating major histocompatibility class I (MHC-I) expression to evade killing by cytotoxic T lymphocytes (CTLs). A potent Nef inhibitor that restores MHC-I is needed to promote immune-mediated clearance of HIV-infected cells. We discovered that the plecomacrolide family of natural products restored MHC-I to the surface of Nef-expressing primary cells with variable potency. Concanamycin A (CMA) counteracted Nef at subnanomolar concentrations that did not interfere with lysosomal acidification or degradation and were nontoxic in primary cell cultures. CMA specifically reversed Nef-mediated down-regulation of MHC-I, but not CD4, and cells treated with CMA showed reduced formation of the Nef:MHC-I:AP-1 complex required for MHC-I down-regulation. CMA restored expression of diverse allotypes of MHC-I in Nef-expressing cells and inhibited Nef alleles from divergent clades of HIV and simian immunodeficiency virus, including from primary patient isolates. Lastly, we found that restoration of MHC-I in HIV-infected cells was accompanied by enhanced CTL-mediated clearance of infected cells comparable to genetic deletion of Nef. Thus, we propose CMA as a lead compound for therapeutic inhibition of Nef to enhance immune-mediated clearance of HIV-infected cells.


Assuntos
HIV-1 , Interações Hospedeiro-Patógeno , Macrolídeos , Linfócitos T Citotóxicos , Células Cultivadas , Infecções por HIV/imunologia , Infecções por HIV/virologia , HIV-1/efeitos dos fármacos , HIV-1/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Interações Hospedeiro-Patógeno/imunologia , Humanos , Macrolídeos/imunologia , Macrolídeos/farmacologia , Linfócitos T Citotóxicos/imunologia , Linfócitos T Citotóxicos/virologia , Produtos do Gene nef do Vírus da Imunodeficiência Humana
13.
Genes Dev ; 28(17): 1885-99, 2014 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-25128433

RESUMO

Telomere length homeostasis is essential for the long-term survival of stem cells, and its set point determines the proliferative capacity of differentiated cell lineages by restricting the reservoir of telomeric repeats. Knockdown and overexpression studies in human tumor cells showed that the shelterin subunit TPP1 recruits telomerase to telomeres through a region termed the TEL patch. However, these studies do not resolve whether the TPP1 TEL patch is the only mechanism for telomerase recruitment and whether telomerase regulation studied in tumor cells is representative of nontransformed cells such as stem cells. Using genome engineering of human embryonic stem cells, which have physiological telomere length homeostasis, we establish that the TPP1 TEL patch is genetically essential for telomere elongation and thus long-term cell viability. Furthermore, genetic bypass, protein fusion, and intragenic complementation assays define two distinct additional mechanisms of TPP1 involvement in telomerase action at telomeres. We demonstrate that TPP1 provides an essential step of telomerase activation as well as feedback regulation of telomerase by telomere length, which is necessary to determine the appropriate telomere length set point in human embryonic stem cells. These studies reveal and resolve multiple TPP1 roles in telomere elongation and stem cell telomere length homeostasis.


Assuntos
Telomerase/metabolismo , Homeostase do Telômero/genética , Telômero/enzimologia , Células-Tronco Embrionárias , Ativação Enzimática/genética , Técnicas de Inativação de Genes , Teste de Complementação Genética , Humanos , Proteínas Proto-Oncogênicas c-ets/genética , Proteínas Proto-Oncogênicas c-ets/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Complexo Shelterina , Telomerase/genética , Telômero/genética , Proteínas de Ligação a Telômeros/genética , Proteínas de Ligação a Telômeros/metabolismo , Variante 6 da Proteína do Fator de Translocação ETS
14.
EMBO J ; 36(13): 1908-1927, 2017 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-28495680

RESUMO

The reverse transcriptase telomerase adds telomeric repeats to chromosome ends. Purified human telomerase catalyzes processive repeat synthesis, which could restore the full ~100 nucleotides of (T2AG3)n lost from replicated chromosome ends as a single elongation event. Processivity inhibition is proposed to be a basis of human disease, but the impacts of different levels of processivity on telomere maintenance have not been examined. Here, we delineate side chains in the telomerase active-site cavity important for repeat addition processivity, determine how they contribute to duplex and single-stranded DNA handling, and test the cellular consequences of partial or complete loss of repeat addition processivity for telomere maintenance. Biochemical findings oblige a new model for DNA and RNA handling dynamics in processive repeat synthesis. Biological analyses implicate repeat addition processivity as essential for telomerase function. However, telomeres can be maintained by telomerases with lower than wild-type processivity. Furthermore, telomerases with low processivity dramatically elongate telomeres when overexpressed. These studies reveal distinct consequences of changes in telomerase repeat addition processivity and expression level on telomere elongation and length maintenance.


Assuntos
Cromossomos Humanos/metabolismo , Sequências Repetitivas de Ácido Nucleico , Telomerase/metabolismo , Domínio Catalítico , Humanos , Modelos Biológicos , Modelos Moleculares , Telomerase/química
15.
Mol Cell ; 49(4): 743-50, 2013 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-23317505

RESUMO

Interferon-induced proteins, including the largely uncharacterized interferon-induced tetratricopeptide repeat (IFIT) protein family, provide defenses against pathogens. Differing from expectations for tetratricopeptide repeat (TPR) proteins and from human IFIT1, IFIT2, and IFIT3, we show that human IFIT5 recognizes cellular RNA instead of protein partners. In vivo and in vitro, IFIT5 bound to endogenous 5'-phosphate-capped RNAs, including transfer RNAs. The crystal structure of IFIT5 revealed a convoluted intramolecular packing of eight TPRs as a fold that we name the TPR eddy. Additional, non-TPR structural elements contribute to an RNA binding cleft. Instead of general cytoplasmic distribution, IFIT5 concentrated in actin-rich protrusions from the apical cell surface colocalized with the RNA-binding retinoic acid-inducible gene-I (RIG-I). These findings establish compartmentalized cellular RNA binding activity as a mechanism for IFIT5 function and reveal the TPR eddy as a scaffold for RNA recognition.


Assuntos
Proteínas de Neoplasias/metabolismo , RNA de Transferência de Metionina/metabolismo , Actinas/metabolismo , Substituição de Aminoácidos , Animais , Cristalografia por Raios X , Proteína DEAD-box 58 , RNA Helicases DEAD-box/química , RNA Helicases DEAD-box/isolamento & purificação , RNA Helicases DEAD-box/metabolismo , Células HEK293 , Humanos , Camundongos , Modelos Moleculares , Mutagênese Sítio-Dirigida , Proteínas de Neoplasias/química , Proteínas de Neoplasias/isolamento & purificação , Ligação Proteica , Mapeamento de Interação de Proteínas , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Transporte Proteico , RNA de Transferência de Metionina/química , Receptores Imunológicos
16.
J Couns Psychol ; 68(3): 357-370, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34043379

RESUMO

This article articulates principles and practices that support methodological integrity in relation to critical qualitative research. We begin by describing 2 changes that have occurred in psychological methods over the last 15 years. (a) Building on foundational work advocating for epistemological pluralism, guidelines on how to design, review, and report qualitative and mixed methods have been advanced to support methodological integrity in keeping with a diversity of researchers' aims and approaches. (b) There has been an increased use of critical epistemological perspectives and critical methods. In light of these changes, the current article puts forward principles to support critical qualitative researchers when considering methodological rigor and when formulating rationales to support their methods in the journal article review process. Illustrating the principles with an example of critical research, the article describes common problems and issues in the research design process that can be considered in order to strengthen the returns of critical studies. Recommendations are made for editors and reviewers on how to conduct reviews of critical qualitative research, and pressing concerns for publishing critical qualitative research are detailed. (PsycInfo Database Record (c) 2021 APA, all rights reserved).


Assuntos
Pesquisa Qualitativa , Projetos de Pesquisa , Pesquisadores , Humanos , Literatura de Revisão como Assunto
17.
J Lesbian Stud ; 25(2): 123-140, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-31894735

RESUMO

Quite a number of heated arguments have been put forth in the controversy about the meanings and appropriate uses of femme identities. In this article, the authors apply a functionalist theoretical framework, developed to explicate the links between gender and gender identities, to reframe the disputes about femme gender. They position two femme identities as responding to distinctive forms of oppression-one that centralizes the affirmation of gender diversity in the face of cisgenderism, and one that centralizes lesbian, gay, bisexual, transgender, and queer (LGBTQ+) femininity to counter femmephobia. They consider the subversive functions of the two identities in terms of unmet needs across four domains. These needs include the need for authenticity in identity (psychological domain); for the prizing of socially devalued characteristics (cultural domain); for security and affiliation (interpersonal domain); and for aesthetic desirability rather than shame (sexual domain). Instead of seeing the two femme identities as at odds, they see them as serving some shared functions, but also distinctive functions in resisting stigma of varied forms. The framework can be applied to other forms of femme-inity (and other genders) to distinguish the varied meanings inherent in gender identities and facilitate research that advances gender theory.


Assuntos
Identidade de Gênero , Homossexualidade Feminina/psicologia , Minorias Sexuais e de Gênero/psicologia , Feminino , Feminilidade , Humanos , Teoria Psicológica , Mudança Social , Estigma Social
18.
Mol Cell ; 48(4): 509-20, 2012 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-23084833

RESUMO

Emerging evidence suggests that Argonaute (Ago)/Piwi proteins have diverse functions in the nucleus and cytoplasm, but the molecular mechanisms employed in the nucleus remain poorly defined. The Tetrahymena thermophila Ago/Piwi protein Twi12 is essential for growth and functions in the nucleus. Twi12-bound small RNAs (sRNAs) are 3' tRNA fragments that contain modified bases and thus are attenuated for base pairing to targets. We show that Twi12 assembles an unexpected complex with the nuclear exonuclease Xrn2. Twi12 functions to stabilize and localize Xrn2, as well as to stimulate its exonuclease activity. Twi12 function depends on sRNA binding, which is required for its nuclear import. Depletion of Twi12 or Xrn2 induces a cellular ribosomal RNA processing defect known to result from limiting Xrn2 activity in other organisms. Our findings suggest a role for an Ago/Piwi protein and 3' tRNA fragments in nuclear RNA metabolism.


Assuntos
Proteínas Argonautas/metabolismo , Núcleo Celular/metabolismo , Exorribonucleases/metabolismo , Processamento Pós-Transcricional do RNA , RNA Ribossômico/metabolismo , RNA de Transferência/metabolismo , Tetrahymena/genética , Proteínas Argonautas/genética , Núcleo Celular/enzimologia , Núcleo Celular/genética , RNA de Transferência/genética , Tetrahymena/citologia , Tetrahymena/metabolismo
19.
Mol Cell ; 47(1): 16-26, 2012 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-22705372

RESUMO

Telomerase is a ribonucleoprotein complex essential for maintenance of telomere DNA at linear chromosome ends. The catalytic core of Tetrahymena telomerase comprises a ternary complex of telomerase RNA (TER), telomerase reverse transcriptase (TERT), and the essential La family protein p65. NMR and crystal structures of p65 C-terminal domain and its complex with stem IV of TER reveal that RNA recognition is achieved by a combination of single- and double-stranded RNA binding, which induces a 105° bend in TER. The domain is a cryptic, atypical RNA recognition motif with a disordered C-terminal extension that forms an α helix in the complex necessary for hierarchical assembly of TERT with p65-TER. This work provides the first structural insight into biogenesis and assembly of TER with a telomerase-specific protein. Additionally, our studies define a structurally homologous domain (xRRM) in genuine La and LARP7 proteins and suggest a general mode of RNA binding for biogenesis of their diverse RNA targets.


Assuntos
Proteínas de Protozoários/química , RNA de Protozoário/química , RNA/química , Ribonucleoproteínas/química , Telomerase/química , Sequência de Aminoácidos , Sequência de Bases , Sítios de Ligação/genética , Cristalografia por Raios X , Ensaio de Desvio de Mobilidade Eletroforética , Holoenzimas/química , Holoenzimas/genética , Holoenzimas/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Conformação de Ácido Nucleico , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , RNA/genética , RNA/metabolismo , RNA de Protozoário/genética , RNA de Protozoário/metabolismo , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Homologia de Sequência de Aminoácidos , Telomerase/genética , Telomerase/metabolismo , Tetrahymena thermophila/enzimologia , Tetrahymena thermophila/genética
20.
Nucleic Acids Res ; 46(15): 7886-7901, 2018 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-29986069

RESUMO

Telomerase adds telomeric repeats to chromosome ends by processive copying of a template within the telomerase RNA bound to telomerase reverse transcriptase. Telomerase RNAs have single-stranded regions that separate the template from a 5' stem and 3' pseudoknot, and mammals gained additional stem P2a.1 separating the template from the pseudoknot. Using human telomerase, we show that the length of template 3'-flanking single-stranded RNA is a determinant of repeat addition processivity whereas template 5'-flanking single-stranded RNA and P2a.1 are critical for activity but not processivity. In comparison, requirements for the template sequence itself are confounding: different substitutions of the same position have strikingly different consequences, from improved processivity and activity to complete inactivation. We discovered that some altered-template sequences stabilize an alternative RNA conformation that precludes the pseudoknot by base-pairing of one pseudoknot strand to the template 3' end. Using mutations to reduce over-stability of the alternative conformation, we restore high activity and processivity to otherwise inactive altered-template telomerase ribonucleoproteins. In cells, over-stabilization or destabilization of the alternative state severely inhibited biogenesis of active telomerase. Our findings delineate roles for human telomerase RNA template-flanking regions, establish a biologically relevant pseudoknot-alternative RNA conformation, and expand the repertoire of human telomerase repeat synthesis.


Assuntos
Conformação de Ácido Nucleico , RNA/genética , Telomerase/metabolismo , Telômero/metabolismo , Tetrahymena/enzimologia , Pareamento de Bases , Sequência de Bases/genética , Humanos , RNA/metabolismo , Telomerase/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA