Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Cell ; 186(23): 5068-5083.e23, 2023 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-37804830

RESUMO

Metabolic reprogramming is a hallmark of cancer. However, mechanisms underlying metabolic reprogramming and how altered metabolism in turn enhances tumorigenicity are poorly understood. Here, we report that arginine levels are elevated in murine and patient hepatocellular carcinoma (HCC), despite reduced expression of arginine synthesis genes. Tumor cells accumulate high levels of arginine due to increased uptake and reduced arginine-to-polyamine conversion. Importantly, the high levels of arginine promote tumor formation via further metabolic reprogramming, including changes in glucose, amino acid, nucleotide, and fatty acid metabolism. Mechanistically, arginine binds RNA-binding motif protein 39 (RBM39) to control expression of metabolic genes. RBM39-mediated upregulation of asparagine synthesis leads to enhanced arginine uptake, creating a positive feedback loop to sustain high arginine levels and oncogenic metabolism. Thus, arginine is a second messenger-like molecule that reprograms metabolism to promote tumor growth.


Assuntos
Arginina , Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Humanos , Camundongos , Arginina/metabolismo , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Metabolismo dos Lipídeos , Neoplasias Hepáticas/metabolismo
2.
Mol Cell ; 82(22): 4246-4261.e11, 2022 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-36400009

RESUMO

Acetyl-coenzyme A (acetyl-CoA) plays an important role in metabolism, gene expression, signaling, and other cellular processes via transfer of its acetyl group to proteins and metabolites. However, the synthesis and usage of acetyl-CoA in disease states such as cancer are poorly characterized. Here, we investigated global acetyl-CoA synthesis and protein acetylation in a mouse model and patient samples of hepatocellular carcinoma (HCC). Unexpectedly, we found that acetyl-CoA levels are decreased in HCC due to transcriptional downregulation of all six acetyl-CoA biosynthesis pathways. This led to hypo-acetylation specifically of non-histone proteins, including many enzymes in metabolic pathways. Importantly, repression of acetyl-CoA synthesis promoted oncogenic dedifferentiation and proliferation. Mechanistically, acetyl-CoA synthesis was repressed by the transcription factors TEAD2 and E2A, previously unknown to control acetyl-CoA synthesis. Knockdown of TEAD2 and E2A restored acetyl-CoA levels and inhibited tumor growth. Our findings causally link transcriptional reprogramming of acetyl-CoA metabolism, dedifferentiation, and cancer.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Camundongos , Animais , Acetilcoenzima A/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Histonas/metabolismo , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Carcinogênese/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo
3.
Nature ; 555(7698): 678-682, 2018 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-29562234

RESUMO

Histidine phosphorylation, the so-called hidden phosphoproteome, is a poorly characterized post-translational modification of proteins. Here we describe a role of histidine phosphorylation in tumorigenesis. Proteomic analysis of 12 tumours from an mTOR-driven hepatocellular carcinoma mouse model revealed that NME1 and NME2, the only known mammalian histidine kinases, were upregulated. Conversely, expression of the putative histidine phosphatase LHPP was downregulated specifically in the tumours. We demonstrate that LHPP is indeed a protein histidine phosphatase. Consistent with these observations, global histidine phosphorylation was significantly upregulated in the liver tumours. Sustained, hepatic expression of LHPP in the hepatocellular carcinoma mouse model reduced tumour burden and prevented the loss of liver function. Finally, in patients with hepatocellular carcinoma, low expression of LHPP correlated with increased tumour severity and reduced overall survival. Thus, LHPP is a protein histidine phosphatase and tumour suppressor, suggesting that deregulated histidine phosphorylation is oncogenic.


Assuntos
Histidina/metabolismo , Pirofosfatase Inorgânica/metabolismo , Neoplasias Hepáticas/enzimologia , Neoplasias Hepáticas/patologia , Proteínas Supressoras de Tumor/metabolismo , Animais , Carcinoma Hepatocelular/enzimologia , Carcinoma Hepatocelular/patologia , Modelos Animais de Doenças , Humanos , Pirofosfatase Inorgânica/deficiência , Pirofosfatase Inorgânica/genética , Masculino , Camundongos , Fosforilação , Proteômica , Análise de Sobrevida , Serina-Treonina Quinases TOR/metabolismo , Carga Tumoral , Proteínas Supressoras de Tumor/deficiência , Proteínas Supressoras de Tumor/genética
4.
BMC Genomics ; 22(1): 592, 2021 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-34348664

RESUMO

BACKGROUND: Genetic aberrations in hepatocellular carcinoma (HCC) are well known, but the functional consequences of such aberrations remain poorly understood. RESULTS: Here, we explored the effect of defined genetic changes on the transcriptome, proteome and phosphoproteome in twelve tumors from an mTOR-driven hepatocellular carcinoma mouse model. Using Network-based Integration of multi-omiCS data (NetICS), we detected 74 'mediators' that relay via molecular interactions the effects of genetic and miRNA expression changes. The detected mediators account for the effects of oncogenic mTOR signaling on the transcriptome, proteome and phosphoproteome. We confirmed the dysregulation of the mediators YAP1, GRB2, SIRT1, HDAC4 and LIS1 in human HCC. CONCLUSIONS: This study suggests that targeting pathways such as YAP1 or GRB2 signaling and pathways regulating global histone acetylation could be beneficial in treating HCC with hyperactive mTOR signaling.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroRNAs , Preparações Farmacêuticas , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Transcriptoma
5.
Proc Natl Acad Sci U S A ; 113(5): 1381-6, 2016 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-26787912

RESUMO

Compensatory signaling pathways in tumors confer resistance to targeted therapy, but the pathways and their mechanisms of activation remain largely unknown. We describe a procedure for quantitative proteomics and phosphoproteomics on snap-frozen biopsies of hepatocellular carcinoma (HCC) and matched nontumor liver tissue. We applied this procedure to monitor signaling pathways in serial biopsies taken from an HCC patient before and during treatment with the multikinase inhibitor sorafenib. At diagnosis, the patient had an advanced HCC. At the time of the second biopsy, abdominal imaging revealed progressive disease despite sorafenib treatment. Sorafenib was confirmed to inhibit MAPK signaling in the tumor, as measured by reduced ribosomal protein S6 kinase phosphorylation. Hierarchical clustering and enrichment analysis revealed pathways broadly implicated in tumor progression and resistance, such as epithelial-to-mesenchymal transition and cell adhesion pathways. Thus, we describe a protocol for quantitative analysis of oncogenic pathways in HCC biopsies and obtained first insights into the effect of sorafenib in vivo. This protocol will allow elucidation of mechanisms of resistance and enable precision medicine.


Assuntos
Antineoplásicos/uso terapêutico , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Niacinamida/análogos & derivados , Compostos de Fenilureia/uso terapêutico , Fosfoproteínas/metabolismo , Proteômica , Biópsia , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Niacinamida/uso terapêutico , Fosforilação , Sorafenibe
6.
Mol Metab ; 65: 101580, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36028121

RESUMO

OBJECTIVE: Adipose tissue, via sympathetic and possibly sensory neurons, communicates with the central nervous system (CNS) to mediate energy homeostasis. In contrast to the sympathetic nervous system, the morphology, role and regulation of the sensory nervous system in adipose tissue are poorly characterized. METHODS AND RESULTS: Taking advantage of recent progress in whole-mount three-dimensional imaging, we identified a network of calcitonin gene-related protein (CGRP)-positive sensory neurons in murine white adipose tissue (WAT). We found that adipose mammalian target of rapamycin complex 2 (mTORC2), a major component of the insulin signaling pathway, is required for arborization of sensory neurons, but not of sympathetic neurons. Time course experiments revealed that adipose mTORC2 is required for maintenance of sensory neurons. Furthermore, loss of sensory innervation in WAT coincided with systemic insulin resistance. Finally, we established that neuronal protein growth-associated protein 43 (GAP43) is a marker for sensory neurons in adipose tissue. CONCLUSION: Our findings indicate that adipose mTORC2 is necessary for sensory innervation in WAT. In addition, our results suggest that WAT may affect whole-body energy homeostasis via sensory neurons.


Assuntos
Peptídeo Relacionado com Gene de Calcitonina , Insulinas , Tecido Adiposo/metabolismo , Tecido Adiposo Branco/metabolismo , Animais , Calcitonina , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Proteína GAP-43/metabolismo , Homeostase , Insulinas/metabolismo , Mamíferos , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Camundongos , Células Receptoras Sensoriais , Serina-Treonina Quinases TOR/metabolismo
7.
Nat Commun ; 13(1): 2436, 2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-35508466

RESUMO

Proteogenomic analyses of hepatocellular carcinomas (HCC) have focused on early-stage, HBV-associated HCCs. Here we present an integrated proteogenomic analysis of HCCs across clinical stages and etiologies. Pathways related to cell cycle, transcriptional and translational control, signaling transduction, and metabolism are dysregulated and differentially regulated on the genomic, transcriptomic, proteomic and phosphoproteomic levels. We describe candidate copy number-driven driver genes involved in epithelial-to-mesenchymal transition, the Wnt-ß-catenin, AKT/mTOR and Notch pathways, cell cycle and DNA damage regulation. The targetable aurora kinase A and CDKs are upregulated. CTNNB1 and TP53 mutations are associated with altered protein phosphorylation related to actin filament organization and lipid metabolism, respectively. Integrative proteogenomic clusters show that HCC constitutes heterogeneous subgroups with distinct regulation of biological processes, metabolic reprogramming and kinase activation. Our study provides a comprehensive overview of the proteomic and phophoproteomic landscapes of HCCs, revealing the major pathways altered in the (phospho)proteome.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Proteogenômica , Carcinoma Hepatocelular/metabolismo , Humanos , Neoplasias Hepáticas/metabolismo , Mutação , Proteômica , beta Catenina/metabolismo
8.
Hypertension ; 73(2): 469-480, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30580688

RESUMO

Primary aldosteronism is a disease of excessive production of adrenal steroid hormones and the most common cause of endocrine hypertension. Primary aldosteronism results mainly from bilateral adrenal hyperplasia or unilateral aldosterone-producing adenoma (APA). Primary aldosteronism cause at the molecular level is incompletely understood and a targeted treatment preventing excessive adrenal steroid production is not available. Here, we perform deep quantitative proteomic and phosphoproteomic profiling of 6 pairs of APA and adjacent nontumoral adrenal cortex. We show that increased steroidogenesis in APA is accompanied by upregulation of steroidogenic enzymes (HSD3B2, CYP21A2, CYP11B2) and of proteins involved in cholesterol uptake (LSR). We demonstrate that HSD3B2 is phosphorylated at Ser95 or 96 and identify a novel phosphorylation site, Ser489, in CYP21A2, suggesting that steroidogenic enzymes are regulated by phosphorylation. Our analysis also reveals altered ECM (extracellular matrix) composition in APA that affects ECM-cell surface interactions and actin cytoskeleton rearrangements. We show that RHOC, a GTPase controlling actin organization in response to extracellular stimuli, is upregulated in APA and promotes expression of the aldosterone synthase gene CYP11B2. Our data also indicate deregulation of protein N-glycosylation and GABAergic signaling in APAs. Finally, we find that mTORC1 (mammalian target of rapamycin complex 1) signaling is the major pathway deregulated in APA. Our study provides a rich resource for future research on the molecular mechanisms of primary aldosteronism.


Assuntos
Adenoma/metabolismo , Aldosterona/biossíntese , Proteômica/métodos , Matriz Extracelular/metabolismo , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/fisiologia , Transdução de Sinais , Ácido gama-Aminobutírico/metabolismo
9.
Cell Rep ; 25(11): 3047-3058.e4, 2018 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-30540938

RESUMO

Highly glycolytic cancer cells prevent intracellular acidification by excreting the glycolytic end-products lactate and H+ via the monocarboxylate transporters 1 (MCT1) and 4 (MCT4). We report that syrosingopine, an anti-hypertensive drug, is a dual MCT1 and MCT4 inhibitor (with 60-fold higher potency on MCT4) that prevents lactate and H+ efflux. Syrosingopine elicits synthetic lethality with metformin, an inhibitor of mitochondrial NADH dehydrogenase. NAD+, required for the ATP-generating steps of glycolysis, is regenerated from NADH by mitochondrial NADH dehydrogenase or lactate dehydrogenase. Syrosingopine treatment leads to high intracellular lactate levels and thereby end-product inhibition of lactate dehydrogenase. The loss of NAD+ regeneration capacity due to combined metformin and syrosingopine treatment results in glycolytic blockade, leading to ATP depletion and cell death. Accordingly, ATP levels can be partly restored by exogenously provided NAD+, the NAD precursor nicotinamide mononucleotide (NMN), or vitamin K2. Thus, pharmacological inhibition of MCT1 and MCT4 combined with metformin treatment is a potential cancer therapy.


Assuntos
Ácido Láctico/metabolismo , Metformina/farmacologia , Transportadores de Ácidos Monocarboxílicos/antagonistas & inibidores , Proteínas Musculares/antagonistas & inibidores , NAD/metabolismo , Neoplasias/metabolismo , Simportadores/antagonistas & inibidores , Mutações Sintéticas Letais , Ácidos/metabolismo , Animais , Linhagem Celular Tumoral , Metabolismo Energético/efeitos dos fármacos , Humanos , Espaço Intracelular/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Transportadores de Ácidos Monocarboxílicos/metabolismo , Proteínas Musculares/metabolismo , Reserpina/análogos & derivados , Reserpina/farmacologia , Simportadores/metabolismo
10.
J Clin Invest ; 128(4): 1538-1550, 2018 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-29528335

RESUMO

Obesity is a major risk factor for insulin resistance and type 2 diabetes. In adipose tissue, obesity-mediated insulin resistance correlates with the accumulation of proinflammatory macrophages and inflammation. However, the causal relationship of these events is unclear. Here, we report that obesity-induced insulin resistance in mice precedes macrophage accumulation and inflammation in adipose tissue. Using a mouse model that combines genetically induced, adipose-specific insulin resistance (mTORC2-knockout) and diet-induced obesity, we found that insulin resistance causes local accumulation of proinflammatory macrophages. Mechanistically, insulin resistance in adipocytes results in production of the chemokine monocyte chemoattractant protein 1 (MCP1), which recruits monocytes and activates proinflammatory macrophages. Finally, insulin resistance (high homeostatic model assessment of insulin resistance [HOMA-IR]) correlated with reduced insulin/mTORC2 signaling and elevated MCP1 production in visceral adipose tissue from obese human subjects. Our findings suggest that insulin resistance in adipose tissue leads to inflammation rather than vice versa.


Assuntos
Resistência à Insulina , Gordura Intra-Abdominal/metabolismo , Macrófagos/metabolismo , Obesidade/metabolismo , Paniculite/metabolismo , Transdução de Sinais , Células 3T3-L1 , Animais , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Humanos , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Gordura Intra-Abdominal/patologia , Macrófagos/patologia , Alvo Mecanístico do Complexo 2 de Rapamicina/genética , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Camundongos , Camundongos Knockout , Obesidade/genética , Obesidade/patologia , Paniculite/genética , Paniculite/patologia
11.
Cancer Cell ; 32(6): 807-823.e12, 2017 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-29232555

RESUMO

Dysregulated mammalian target of rapamycin (mTOR) promotes cancer, but underlying mechanisms are poorly understood. We describe an mTOR-driven mouse model that displays hepatosteatosis progressing to hepatocellular carcinoma (HCC). Longitudinal proteomic, lipidomics, and metabolomic analyses revealed that hepatic mTORC2 promotes de novo fatty acid and lipid synthesis, leading to steatosis and tumor development. In particular, mTORC2 stimulated sphingolipid (glucosylceramide) and glycerophospholipid (cardiolipin) synthesis. Inhibition of fatty acid or sphingolipid synthesis prevented tumor development, indicating a causal effect in tumorigenesis. Increased levels of cardiolipin were associated with tubular mitochondria and enhanced oxidative phosphorylation. Furthermore, increased lipogenesis correlated with elevated mTORC2 activity and HCC in human patients. Thus, mTORC2 promotes cancer via formation of lipids essential for growth and energy production.


Assuntos
Carcinogênese/metabolismo , Carcinoma Hepatocelular/metabolismo , Fígado Gorduroso/metabolismo , Lipogênese/fisiologia , Neoplasias Hepáticas/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Animais , Carcinoma Hepatocelular/etiologia , Transformação Celular Neoplásica/metabolismo , Fígado Gorduroso/complicações , Humanos , Lipídeos/biossíntese , Neoplasias Hepáticas/etiologia , Camundongos , Camundongos Knockout
12.
Mol Biosyst ; 2(11): 561-7, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17216037

RESUMO

Interleukin-3 (IL3) mRNA is intrinsically labile due to the presence of a destabilizing AU-rich element (ARE) that targets the transcript for rapid degradation. We review our experience with a sensitive reporter system where changes in IL3 mRNA stability are translated into increased/decreased green fluorescent protein (GFP) signals. A GFP reporter gene was fused to the full-length IL3 3'UTR containing the ARE motif that responds to regulatory signals that control transcript stability. The reporter system was tested against known IL3 mRNA stabilizing/destabilizing agents either through pharmacological treatment, siRNA knock-down of components of the decay machinery, mutation of the ARE motif, or in tumour lines harbouring stable IL3 mRNA. In all cases, the reporter transcript responds in an identical fashion to the endogenous IL3 message thereby verifying the fidelity of the system. This reporter system allows screening and identification of novel ARE-mRNA stabilizing compounds, or the isolation of mutants defective in ARE-mRNA turnover. We also report preliminary attempts to modify the system for high-throughput screening of an extensive compound library. The simplicity and effectiveness of this screen makes it ideal for screening of modulators of clinically important ARE-bearing transcripts such as TNFalpha, VEGF, the interferons and other cytokines.


Assuntos
Aciltransferases/genética , Bioensaio/métodos , Proteínas de Fluorescência Verde/genética , Estabilidade de RNA , RNA Mensageiro/metabolismo , Animais , Sequência de Bases , Bioensaio/normas , Linhagem Celular , Eletroporação , Genes Reporter , Camundongos , Modelos Biológicos , Dados de Sequência Molecular , Reprodutibilidade dos Testes
13.
Nucleic Acids Res ; 32(11): e89, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15247322

RESUMO

A reporter transcript containing the green fluorescent protein (GFP) gene upstream of the destabilizing 3'-untranslated region (3'-UTR) of the murine IL-3 gene was inserted in mouse PB-3c-15 mast cells. The GFP-IL-3 transcript was inherently unstable due to the presence of an adenosine-uridine (AU)-rich element (ARE) in the 3'-UTR and was subject to rapid decay giving a low baseline of GFP fluorescence. Transcript stabilization with ionomycin resulted in an increase of fluorescence that is quantitated by FACS analysis of responding cells. Using this system we have identified okadaic acid as a novel stabilizing compound, and investigated the upstream signaling pathways leading to stabilization. This reporter system has the advantage of speed and simplicity over standard methods currently in use and in addition to serving as a research tool it can be easily automated to increase throughput for drug discovery.


Assuntos
Genes Reporter , Proteínas Luminescentes/genética , Estabilidade de RNA/efeitos dos fármacos , RNA Mensageiro/metabolismo , Sequências Reguladoras de Ácido Ribonucleico , Regiões 3' não Traduzidas , Animais , Sequência de Bases , Linhagem Celular , Avaliação de Medicamentos/métodos , Proteínas de Fluorescência Verde , Interleucina-3/genética , Ionomicina/farmacologia , Proteínas Luminescentes/análise , Camundongos , Dados de Sequência Molecular , Ácido Okadáico/farmacologia , Fatores de Tempo
14.
EMBO Mol Med ; 8(3): 232-46, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26772600

RESUMO

Activation of non-shivering thermogenesis (NST) in brown adipose tissue (BAT) has been proposed as an anti-obesity treatment. Moreover, cold-induced glucose uptake could normalize blood glucose levels in insulin-resistant patients. It is therefore important to identify novel regulators of NST and cold-induced glucose uptake. Mammalian target of rapamycin complex 2 (mTORC2) mediates insulin-stimulated glucose uptake in metabolic tissues, but its role in NST is unknown. We show that mTORC2 is activated in brown adipocytes upon ß-adrenergic stimulation. Furthermore, mice lacking mTORC2 specifically in adipose tissue (AdRiKO mice) are hypothermic, display increased sensitivity to cold, and show impaired cold-induced glucose uptake and glycolysis. Restoration of glucose uptake in BAT by overexpression of hexokinase II or activated Akt2 was sufficient to increase body temperature and improve cold tolerance in AdRiKO mice. Thus, mTORC2 in BAT mediates temperature homeostasis via regulation of cold-induced glucose uptake. Our findings demonstrate the importance of glucose metabolism in temperature regulation.


Assuntos
Tecido Adiposo Marrom/metabolismo , Glucose/metabolismo , Glicólise , Complexos Multiproteicos/metabolismo , Proteína Oncogênica v-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Termogênese , Animais , Alvo Mecanístico do Complexo 2 de Rapamicina , Camundongos
15.
Sci Adv ; 2(12): e1601756, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28028542

RESUMO

We report that the anticancer activity of the widely used diabetic drug metformin is strongly potentiated by syrosingopine. Synthetic lethality elicited by combining the two drugs is synergistic and specific to transformed cells. This effect is unrelated to syrosingopine's known role as an inhibitor of the vesicular monoamine transporters. Syrosingopine binds to the glycolytic enzyme α-enolase in vitro, and the expression of the γ-enolase isoform correlates with nonresponsiveness to the drug combination. Syrosingopine sensitized cancer cells to metformin and its more potent derivative phenformin far below the individual toxic threshold of each compound. Thus, combining syrosingopine and codrugs is a promising therapeutic strategy for clinical application for the treatment of cancer.


Assuntos
Metformina/farmacologia , Reserpina/análogos & derivados , Animais , Linhagem Celular Tumoral , Sinergismo Farmacológico , Glicólise , Humanos , Camundongos , Camundongos Knockout , Fenformin/farmacologia , Fosfopiruvato Hidratase/química , Reserpina/farmacologia
16.
J Biomol Screen ; 19(1): 131-44, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23954931

RESUMO

The mTOR pathway is a critical integrator of nutrient and growth factor signaling. Once activated, mTOR promotes cell growth and proliferation. Several components of the mTOR pathway are frequently deregulated in tumors, leading to constitutive activation of the pathway and thus contribute to uncontrolled cell growth. We performed a high-throughput screen with an isogenic cell line system to identify compounds specifically inhibiting proliferation of PTEN/mTOR-pathway addicted cells. We show here the characterization and mode of action of two such compound classes. One compound class inhibits components of the PTEN/mTOR signaling pathway, such as S6 ribosomal protein phosphorylation, and leads to cyclin D3 downregulation. These compounds are not adenosine triphosphate competitive inhibitors for kinases in the pathway, nor do they require FKBP12 for activity like rapamycin. The other compound class turned out to be a farnesylation inhibitor, blocking the activity of GTPases, as well as an inducer of oxidative stress. Our results demonstrate that an isogenic cell system with few specific mutations in oncogenes and tumor suppressor genes can identify different classes of compounds selectively inhibiting proliferation of PTEN/mTOR pathway-addicted isogenic clones. The identified mechanisms are in line with the known cellular signaling networks activated by the altered oncogenes and suppressor genes in the isogenic system.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Animais , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Descoberta de Drogas/métodos , Ensaios de Triagem em Larga Escala , Humanos , Concentração Inibidora 50 , Camundongos , Prenilação/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
17.
Nat Rev Drug Discov ; 10(11): 868-80, 2011 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-22037041

RESUMO

Mammalian target of rapamycin (mTOR) is an atypical protein kinase that controls growth and metabolism in response to nutrients, growth factors and cellular energy levels, and it is frequently dysregulated in cancer and metabolic disorders. Rapamycin is an allosteric inhibitor of mTOR, and was approved as an immuno-suppressant in 1999. In recent years, interest has focused on its potential as an anticancer drug. However, the performance of rapamycin and its analogues (rapalogues) has been undistinguished despite isolated successes in subsets of cancer, suggesting that the full therapeutic potential of targeting mTOR has yet to be exploited. A new generation of ATP-competitive inhibitors that directly target the mTOR catalytic site display potent and comprehensive mTOR inhibition and are in early clinical trials.


Assuntos
Inibidores de Proteínas Quinases/uso terapêutico , Sirolimo/uso terapêutico , Serina-Treonina Quinases TOR/antagonistas & inibidores , Animais , Humanos , Imunossupressores/farmacologia , Imunossupressores/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/enzimologia , Inibidores de Proteínas Quinases/farmacologia , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/metabolismo
18.
EMBO J ; 21(17): 4709-18, 2002 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-12198173

RESUMO

To identify regulators of AU-rich element (ARE)-dependent mRNA turnover we have followed a genetic approach using a mutagenized cell line (slowC) that fails to degrade cytokine mRNA. Accordingly, a GFP reporter construct whose mRNA is under control of the ARE from interleukin-3 gives an increased fluorescence signal in slowC. Here we describe rescue of slowC by a retroviral cDNA library. Flow cytometry allowed us to isolate revertants with reconstituted rapid mRNA decay. The cDNA was identified as butyrate response factor-1 (BRF1), encoding a zinc finger protein homologous to tristetraprolin. Mutant slowC carries frame-shift mutations in both BRF1 alleles, whereas slowB with intermediate decay kinetics is heterozygous. By use of small interfering (si)RNA, independent evidence for an active role of BRF1 in mRNA degradation was obtained. In transiently transfected NIH 3T3 cells, BRF1 accelerated mRNA decay and antagonized the stabilizing effect of PI3-kinase, while mutation of the zinc fingers abolished both function and ARE-binding activity. This approach, which identified BRF1 as an essential regulator of ARE-dependent mRNA decay, should also be applicable to other cis-elements of mRNA turnover.


Assuntos
Regiões 3' não Traduzidas/genética , Proteínas de Ligação a DNA , Estabilidade de RNA , RNA Mensageiro/metabolismo , Fator de Transcrição TFIIIB , Fatores de Transcrição/genética , Fatores de Transcrição/fisiologia , Células 3T3 , Animais , Fator 1 de Resposta a Butirato , Clonagem Molecular , Códon sem Sentido , Citocinas/genética , DNA Complementar/genética , Fibrossarcoma/química , Fibrossarcoma/patologia , Mutação da Fase de Leitura , Genes Reporter , Teste de Complementação Genética , Humanos , Proteínas Imediatamente Precoces/análise , Proteínas Imediatamente Precoces/química , Camundongos , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/isolamento & purificação , Inibidores de Fosfoinositídeo-3 Quinase , RNA Interferente Pequeno , RNA não Traduzido/metabolismo , Proteínas de Saccharomyces cerevisiae , Relação Estrutura-Atividade , Frações Subcelulares/química , Fatores Associados à Proteína de Ligação a TATA , Fatores de Transcrição/isolamento & purificação , Transfecção , Tristetraprolina , Células Tumorais Cultivadas/química , Dedos de Zinco/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA