Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Anal Bioanal Chem ; 411(21): 5563-5576, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31209547

RESUMO

The Surface-enhanced Raman spectroscopy (SERS) method based on gold nanoparticles as SERS substrate was investigated for the label-free detection and quantification of probiotic bacteria that are widely used in various pharmaceutical formulations. Indeed, the development of a simple and fast SERS method dedicated to the quantification of bacteria should be very useful for the characterization of such formulations in a more convenient way than the usually performed tedious and time-consuming conventional counting method. For this purpose, uncoated near-spherical gold nanoparticles were developed at room temperature by acidic treatment of star-like gold nanoparticle precursors. In this study, we first investigated the influence of acidic treatment conditions on both the nanoparticle physicochemical properties and SERS efficiency using Rhodamine 6G (R6G) as "model" analyte. Results highlighted that an effective R6G Raman signal enhancement was obtained by promoting chemical effect through R6G-anion interactions and by obtaining a suitable aggregation state of the nanoparticles. Depending on the nanoparticle synthesis conditions, R6G SERS signals were up to 102-103-fold greater than those obtained with star-like gold nanoparticles. The synthesized spherical gold nanoparticles were then successfully applied for the detection and quantification of Lactobacillus rhamnosus GG (LGG). In that case, the signal enhancement was especially due to the combination of anion-induced chemical enhancement and nanoparticle aggregation on LGG cell wall consecutive to non-specific interactions. Both the simplicity and speed of the procedure, achieved under 30 min, including nanoparticle synthesis, sample preparation, and acquisition of SERS spectra, appeared as very relevant for the characterization of pharmaceutical formulations incorporating probiotics. Graphical abstract.


Assuntos
Ouro/química , Lacticaseibacillus rhamnosus/isolamento & purificação , Nanopartículas Metálicas/química , Análise Espectral Raman/métodos , Probióticos , Rodaminas/química , Espectrofotometria Ultravioleta
2.
New Phytol ; 220(4): 1309-1321, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29624684

RESUMO

In ectomycorrhiza, root ingress and colonization of the apoplast by colonizing hyphae is thought to rely mainly on the mechanical force that results from hyphal tip growth, but this could be enhanced by secretion of cell-wall-degrading enzymes, which have not yet been identified. The sole cellulose-binding module (CBM1) encoded in the genome of the ectomycorrhizal Laccaria bicolor is linked to a glycoside hydrolase family 5 (GH5) endoglucanase, LbGH5-CBM1. Here, we characterize LbGH5-CBM1 gene expression and the biochemical properties of its protein product. We also immunolocalized LbGH5-CBM1 by immunofluorescence confocal microscopy in poplar ectomycorrhiza. We show that LbGH5-CBM1 expression is substantially induced in ectomycorrhiza, and RNAi mutants with a decreased LbGH5-CBM1 expression have a lower ability to form ectomycorrhiza, suggesting a key role in symbiosis. Recombinant LbGH5-CBM1 displays its highest activity towards cellulose and galactomannans, but no activity toward L. bicolor cell walls. In situ localization of LbGH5-CBM1 in ectomycorrhiza reveals that the endoglucanase accumulates at the periphery of hyphae forming the Hartig net and the mantle. Our data suggest that the symbiosis-induced endoglucanase LbGH5-CBM1 is an enzymatic effector involved in cell wall remodeling during formation of the Hartig net and is an important determinant for successful symbiotic colonization.


Assuntos
Celulase/metabolismo , Laccaria/enzimologia , Micorrizas/enzimologia , Simbiose/fisiologia , Celulase/química , Celulase/isolamento & purificação , Celulose/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/isolamento & purificação , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Hifas/metabolismo , Laccaria/genética , Mananas/metabolismo , Micorrizas/genética , Pichia/metabolismo , Domínios Proteicos , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/metabolismo , Transcrição Gênica
3.
Fungal Genet Biol ; 72: 168-181, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25173823

RESUMO

Ectomycorrhizal fungi, living in soil forests, are required microorganisms to sustain tree growth and productivity. The establishment of mutualistic interaction with roots to form ectomycorrhiza (ECM) is not well known at the molecular level. In particular, how fungal and plant cell walls are rearranged to establish a fully functional ectomycorrhiza is poorly understood. Nevertheless, it is likely that Carbohydrate Active enZymes (CAZyme) produced by the fungus participate in this process. Genome-wide transcriptome profiling during ECM development was used to examine how the CAZome of Laccaria bicolor is regulated during symbiosis establishment. CAZymes active on fungal cell wall were upregulated during ECM development in particular after 4weeks of contact when the hyphae are surrounding the root cells and start to colonize the apoplast. We demonstrated that one expansin-like protein, whose expression is specific to symbiotic tissues, localizes within fungal cell wall. Whereas L. bicolor genome contained a constricted repertoire of CAZymes active on cellulose and hemicellulose, these CAZymes were expressed during the first steps of root cells colonization. L. bicolor retained the ability to use homogalacturonan, a pectin-derived substrate, as carbon source. CAZymes likely involved in pectin hydrolysis were mainly expressed at the stage of a fully mature ECM. All together, our data suggest an active remodelling of fungal cell wall with a possible involvement of expansin during ECM development. By contrast, a soft remodelling of the plant cell wall likely occurs through the loosening of the cellulose microfibrils by AA9 or GH12 CAZymes and middle lamella smooth remodelling through pectin (homogalacturonan) hydrolysis likely by GH28, GH12 CAZymes.


Assuntos
Perfilação da Expressão Gênica , Expressão Gênica , Genômica , Glicosídeo Hidrolases/biossíntese , Laccaria/enzimologia , Laccaria/fisiologia , Simbiose , Glicosídeo Hidrolases/genética , Laccaria/genética , Laccaria/isolamento & purificação , Raízes de Plantas/microbiologia , Populus/microbiologia
4.
Sci Rep ; 11(1): 20722, 2021 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-34671079

RESUMO

In Cystic Fibrosis (CF), a rapid and standardized definition of chronic infection would allow a better management of Pseudomonas aeruginosa (Pa) infections, as well as a quick grouping of patients during clinical trials allowing better comparisons between studies. With this purpose, we compared the metabolic profiles of 44 in vitro cultures of Pa strains isolated from CF patients at different stages of infection in order to identify metabolites differentially synthetized according to these clinical stages. Compounds produced and secreted by each strain in the supernatant of a liquid culture were analysed by metabolomic approaches (UHPLC-DAD-ESI/QTOF, UV and UPLC-Orbitrap, MS). Multivariate analyses showed that first colonization strains could be differentiated from chronic colonization ones, by producing notably more Alkyl-Quinolones (AQs) derivatives. Especially, five AQs were discriminant: HQC5, HQNOC7, HQNOC7:1, db-PQS C9 and HQNOC9:1. However, the production of HHQ was equivalent between strain types. The HHQ/HQNOC9:1 ratio was then found to be significantly different between chronic and primo-colonising strains by using both UV (p = 0.003) and HRMS data (p = 1.5 × 10-5). Our study suggests that some AQ derivatives can be used as biomarkers for an improved management of CF patients as well as a better definition of the clinical stages of Pa infection.


Assuntos
Biomarcadores/metabolismo , Fibrose Cística/metabolismo , Infecções por Pseudomonas/metabolismo , Quinolonas/metabolismo , Fibrose Cística/microbiologia , Humanos , Infecção Persistente/metabolismo , Infecção Persistente/microbiologia , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/patogenicidade , Percepção de Quorum/fisiologia
5.
Int J Pharm ; 584: 119414, 2020 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-32438040

RESUMO

Antibiotics are well-known disruptive elements of the intestinal microbiota and antibiotic-associated diarrhea appeared as the most common complication related with post-antibiotic dysbiosis. Lactobacillus rhamnosus GG (LGG) strain is very effective in preventing antibiotic-associated diarrhea in children and adults. However, as any probiotics, it is concerned by the loss of viability during storage and gastrointestinal transit. The aim of this study was to develop an encapsulation system suitable for the specific colonic delivery of LGG strain after oral administration. For this purpose, spray-dried Eudragit® S100 microparticles encapsulating LGG bacteria were developed by using an aqueous based spray-drying approach, avoiding the use of organic solvents. Carbohydrates were added to the formulation since they are widely used as protective agents of bacteria against the harmful effect of dehydration stress. Here, both Surface Enhanced Raman Scattering (SERS) and conventional plate count methods showed that carbohydrates increased the survival ratio of bacteria after spray-drying from 3 to more than 50%. Moreover, these protective agents ensured low residual moisture content thus providing great stability of the cells in the spray-dried powder during storage. Significant improvement of the cell viability in simulated gastro intestinal fluid (SGIF) was observed for encapsulated cells as compared with free LGG bacteria for which no viable cell was detectable after 1 h incubation in gastric fluid only. As a consequence, 4.5 × 107 CFU/g of encapsulated LGG were found viable after incubation of microparticles 1 h in Simulated Gastric Fluid followed by 6 h in Simulated Intestinal Fluid, corresponding to less than 3 log reduction of viable cells during the 7 h incubation in Simulated Gastro Intestinal Fluid. These results attested that the developed encapsulation system is suitable for its use as a bacteria carrier for specific colonic delivery.


Assuntos
Dessecação/métodos , Lacticaseibacillus rhamnosus , Microesferas , Probióticos/administração & dosagem , Tecnologia Farmacêutica/métodos , Administração Oral , Carboidratos/química , Colo , Contagem de Colônia Microbiana , Liberação Controlada de Fármacos , Concentração de Íons de Hidrogênio , Viabilidade Microbiana , Ácidos Polimetacrílicos/química , Análise Espectral Raman
6.
Eur J Med Chem ; 150: 900-907, 2018 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-29597171

RESUMO

A multi-step procedure has been described which afforded satisfactory yields of N,N'-disubstituted cinnamamides derived from N-Boc-protected amino acids (Boc-Gly, Boc-Val, Boc-Phe). The key step of this synthesis was a regioselective RedAl reduction of an amide function in presence of a carbamate group. Next, these cinnamamides were evaluated in co-admnistration with ciprofloxacin as efflux pump inhibitors against two S. aureus strains, NorA overexpressing SA1199B and wild type SA1199. In parallel, their intrinsic toxicity was appreciated on human lung fibroblast MRC5 cells. Therefore, the cinnamamide combining both carbamate and indol-3-yl groups, was found to be the most active and one of the less toxic EPI and constituted a promising hit.


Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Cinamatos/farmacologia , Ciprofloxacina/farmacologia , Proteínas Associadas à Resistência a Múltiplos Medicamentos/antagonistas & inibidores , Staphylococcus aureus/efeitos dos fármacos , Antibacterianos/síntese química , Antibacterianos/química , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Cinamatos/síntese química , Cinamatos/química , Ciprofloxacina/síntese química , Ciprofloxacina/química , Relação Dose-Resposta a Droga , Fibroblastos/efeitos dos fármacos , Fibroblastos/microbiologia , Humanos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Relação Estrutura-Atividade
7.
PLoS One ; 12(3): e0173022, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28282386

RESUMO

Cystic fibrosis (CF) lungs harbor a complex community of interacting microbes, including pathogens like Pseudomonas aeruginosa. Meta-taxogenomic analysis based on V5-V6 rrs PCR products of 52 P. aeruginosa-positive (Pp) and 52 P. aeruginosa-negative (Pn) pooled DNA extracts from CF sputa suggested positive associations between P. aeruginosa and Stenotrophomonas and Prevotella, but negative ones with Haemophilus, Neisseria and Burkholderia. Internal Transcribed Spacer analyses (RISA) from individual DNA extracts identified three significant genetic structures within the CF cohorts, and indicated an impact of P. aeruginosa. RISA clusters Ip and IIIp contained CF sputa with a P. aeruginosa prevalence above 93%, and of 24.2% in cluster IIp. Clusters Ip and IIIp showed lower RISA genetic diversity and richness than IIp. Highly similar cluster IIp RISA profiles were obtained from two patients harboring isolates of a same P. aeruginosa clone, suggesting convergent evolution in the structure of their microbiota. CF patients of cluster IIp had received significantly less antibiotics than patients of clusters Ip and IIIp but harbored the most resistant P. aeruginosa strains. Patients of cluster IIIp were older than those of Ip. The effects of P. aeruginosa on the RISA structures could not be fully dissociated from the above two confounding factors but several trends in these datasets support the conclusion of a strong incidence of P. aeruginosa on the genetic structure of CF lung microbiota.


Assuntos
Bactérias/genética , Fibrose Cística/complicações , DNA Bacteriano/metabolismo , Infecções por Pseudomonas/complicações , Escarro/microbiologia , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Bactérias/isolamento & purificação , Análise por Conglomerados , Fibrose Cística/diagnóstico , DNA Bacteriano/genética , Eletroforese em Gel de Campo Pulsado , Variação Genética , Humanos , Incidência , Metagenômica , Testes de Sensibilidade Microbiana , Microbiota , Reação em Cadeia da Polimerase , Infecções por Pseudomonas/epidemiologia , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/isolamento & purificação , RNA Ribossômico/genética , RNA Ribossômico/metabolismo , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA