Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Crit Care ; 19: 9, 2015 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-25583125

RESUMO

INTRODUCTION: The stress index (SI), a parameter derived from the shape of the pressure-time curve, can identify injurious mechanical ventilation. We tested the hypothesis that adjusting tidal volume (VT) to a non-injurious SI in an open lung condition avoids hypoventilation while preventing overdistension in an experimental model of combined lung injury and low chest-wall compliance (Ccw). METHODS: Lung injury was induced by repeated lung lavages using warm saline solution, and Ccw was reduced by controlled intra-abdominal air-insufflation in 22 anesthetized, paralyzed and mechanically ventilated pigs. After injury animals were recruited and submitted to a positive end-expiratory pressure (PEEP) titration trial to find the PEEP level resulting in maximum compliance. During a subsequent four hours of mechanical ventilation, VT was adjusted to keep a plateau pressure (Pplat) of 30 cmH2O (Pplat-group, n = 11) or to a SI between 0.95 and 1.05 (SI-group, n = 11). Respiratory rate was adjusted to maintain a 'normal' PaCO2 (35 to 65 mmHg). SI, lung mechanics, arterial-blood gases haemodynamics pro-inflammatory cytokines and histopathology were analyzed. In addition Computed Tomography (CT) data were acquired at end expiration and end inspiration in six animals. RESULTS: PaCO2 was significantly higher in the Pplat-group (82 versus 53 mmHg, P = 0.01), with a resulting lower pH (7.19 versus 7.34, P = 0.01). We observed significant differences in VT (7.3 versus 5.4 mlKg(-1), P = 0.002) and Pplat values (30 versus 35 cmH2O, P = 0.001) between the Pplat-group and SI-group respectively. SI (1.03 versus 0.99, P = 0.42) and end-inspiratory transpulmonary pressure (PTP) (17 versus 18 cmH2O, P = 0.42) were similar in the Pplat- and SI-groups respectively, without differences in overinflated lung areas at end- inspiration in both groups. Cytokines and histopathology showed no differences. CONCLUSIONS: Setting tidal volume to a non-injurious stress index in an open lung condition improves alveolar ventilation and prevents overdistension without increasing lung injury. This is in comparison with limited Pplat protective ventilation in a model of lung injury with low chest-wall compliance.


Assuntos
Lesão Pulmonar/terapia , Respiração com Pressão Positiva/métodos , Parede Torácica/fisiologia , Volume de Ventilação Pulmonar , Animais , Lavagem Broncoalveolar , Modelos Animais de Doenças , Hemodinâmica , Suínos
2.
JTO Clin Res Rep ; 5(4): 100653, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38525319

RESUMO

Introduction: RET inhibitors with impressive overall response rates are now available for patients with NSCLC, yet the identification of RET fusions remains a difficult challenge. Most guidelines encourage the upfront use of next-generation sequencing (NGS), or alternatively, fluorescence in situ hybridization (FISH) or reverse transcriptase-polymerase chain reaction (RT-PCR) when NGS is not possible or available. Taken together, the suboptimal performance of single-analyte assays to detect RET fusions, although consistent with the notion of encouraging universal NGS, is currently widening some of the clinical practice gaps in the implementation of predictive biomarkers in patients with advanced NSCLC. Methods: This situation prompted us to evaluate several RET assays in a large multicenter cohort of RET fusion-positive NSCLC (n = 38) to obtain real-world data. In addition to RNA-based NGS (the criterion standard method), all positive specimens underwent break-apart RET FISH with two different assays and were also tested by an RT-PCR assay. Results: The most common RET partners were KIF5B (78.9%), followed by CCDC6 (15.8%). The two RET NGS-positive but FISH-negative samples contained a KIF5B(15)-RET(12) fusion. The three RET fusions not identified with RT-PCR were AKAP13(35)-RET(12), KIF5B(24)-RET(9) and KIF5B(24)-RET(11). All three false-negative RT-PCR cases were FISH-positive, exhibited a typical break-apart pattern, and contained a very high number of positive tumor cells with both FISH assays. Signet ring cells, psammoma bodies, and pleomorphic features were frequently observed (in 34.2%, 39.5%, and 39.5% of tumors, respectively). Conclusions: In-depth knowledge of the advantages and disadvantages of the different RET testing methodologies could help clinical and molecular tumor boards implement and maintain sensible algorithms for the rapid and effective detection of RET fusions in patients with NSCLC. The likelihood of RET false-negative results with both FISH and RT-PCR reinforces the need for upfront NGS in patients with NSCLC.

3.
PLoS One ; 11(10): e0164399, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27723827

RESUMO

Different image techniques have been used to analyze mucociliary clearance (MCC) in humans, but current small animal MCC analysis using in vivo imaging has not been well defined. Bitter taste receptor (T2R) agonists increase ciliary beat frequency (CBF) and cause bronchodilation but their effects in vivo are not well understood. This work analyzes in vivo nasal and bronchial MCC in guinea pig animals using three dimension (3D) micro-CT-SPECT images and evaluates the effect of T2R agonists. Intranasal macroaggreggates of albumin-Technetium 99 metastable (MAA-Tc99m) and lung nebulized Tc99m albumin nanocolloids were used to analyze the effect of T2R agonists on nasal and bronchial MCC respectively, using 3D micro-CT-SPECT in guinea pig. MAA-Tc99m showed a nasal mucociliary transport rate of 0.36 mm/min that was increased in presence of T2R agonist to 0.66 mm/min. Tc99m albumin nanocolloids were homogeneously distributed in the lung of guinea pig and cleared with time-dependence through the bronchi and trachea of guinea pig. T2R agonist increased bronchial MCC of Tc99m albumin nanocolloids. T2R agonists increased CBF in human nasal ciliated cells in vitro and induced bronchodilation in human bronchi ex vivo. In summary, T2R agonists increase MCC in vivo as assessed by 3D micro-CT-SPECT analysis.


Assuntos
Albuminas , Pulmão , Depuração Mucociliar/fisiologia , Nanopartículas , Receptores Acoplados a Proteínas G/agonistas , Tomografia Computadorizada com Tomografia Computadorizada de Emissão de Fóton Único/métodos , Microtomografia por Raio-X/métodos , Albuminas/farmacocinética , Albuminas/farmacologia , Animais , Cobaias , Humanos , Pulmão/diagnóstico por imagem , Depuração Mucociliar/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA