Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Org Chem ; 75(1): 197-203, 2010 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-19961235

RESUMO

The pyranose scaffold is unique in its ability to position pharmacophore substituents in various ways in 3D space, and unique pharmacophore scanning libraries could be envisaged that focus on scanning topography rather than diversity in the type of substituents. Approaches have been described that make use of amine and acid functionalities on the pyranose scaffolds to append substituents, and this has enabled the generation of libraries of significant structural diversity. Our general aim was to generate libraries of pyranose-based drug-like mimetics, where the substituents are held close to the scaffold, in order to obtain molecules with better defined positions for the pharmacophore substituents. Here we describe the development of a versatile synthetic route toward peptide mimetics build on 2-amino pyranose scaffolds. The method allows introduction of a wide range of substituent types, it is regio- and stereospecific, and the later diversity steps are performed on solid phase. Further, the same process was applied on glucose and allose scaffolds, in the exemplified cases, and is likely adaptable to other pyranose building blocks. The methods developed in this work give access to molecules that position the three selected binding elements in various 3D orientations on a pyranose scaffold and have been applied for the production of a systematically diverse library of several hundred monosaccharide-based mimetics.


Assuntos
Aminas/química , Monossacarídeos/química , Monossacarídeos/síntese química , Peptídeos/química , Peptídeos/síntese química , Açúcares Ácidos/química , Açúcares Ácidos/síntese química , Técnicas de Química Combinatória , Glicosilação , Espectroscopia de Ressonância Magnética , Estrutura Molecular
2.
Mini Rev Med Chem ; 6(12): 1299-309, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17168806

RESUMO

Carbohydrates have been proven as valuable scaffolds to display pharmocophores and the resulting molecules have demonstrated useful biological activity towards various targets including the somatostatin receptors (SSTR), integrins, HIV-1 protease, matrix metalloproteinases (MMP), multidrug resistance-associated protein (MRP), and as RNA binders. Carbohydrate-based compounds have also shown antibacterial and herbicidal activity.


Assuntos
Carboidratos/química , Desenho de Fármacos
3.
ACS Chem Biol ; 5(8): 741-5, 2010 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-20536264

RESUMO

Molecules that mimic the cytokine thrombopoietin that act by an atypical mechanism of binding to a receptor transmembrane (TM) domain are widely understood to require zinc for their biological activity. We investigated potent thrombopoietin mimetics from three chemical classes including the recently registered drug Eltrombopag, which operate via this novel mechanism, to determine whether zinc is essential for inducing cell proliferation. Using addition of zinc and a potent metal chelator, we show that the existing paradigm is incorrect and the compounds exhibit excellent thrombopoietin-mimetic activity even in the presence of high concentrations of EDTA. The implications of these findings for the mechanism of action are discussed.


Assuntos
Receptores de Trombopoetina/agonistas , Trombopoetina/química , Zinco , Benzoatos/química , Biomimética , Ácido Edético , Hidrazinas/química , Estrutura Terciária de Proteína , Pirazóis/química , Receptores de Trombopoetina/química
4.
J Med Chem ; 53(15): 5576-86, 2010 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-20684600

RESUMO

Success in discovering bioactive peptide mimetics is often limited by the difficulties in correctly transposing known binding elements of the active peptide onto a small and metabolically more stable scaffold while maintaining bioactivity. Here we describe a scanning approach using a library of pyranose-based peptidomimetics that is structurally diverse in a systematic manner, designed to cover all possible conformations of tripeptide motifs containing two aromatic groups and one positive charge. Structural diversity was achieved by efficient selection of various chemoforms, characterized by a choice of pyranose scaffold of defined chirality and substitution pattern. A systematic scanning library of 490 compounds was thus designed, produced, and screened in vitro for activity at the somatostatin (sst(1-5)) and melanin-concentrating hormone (MCH(1)) receptors. Bioactive compounds were found for each target, with specific chemoform preferences identified in each case, which can be used to guide follow-on drug discovery projects without the need for scaffold hopping.


Assuntos
Monossacarídeos/química , Oligopeptídeos/química , Aminoácidos/química , Animais , Ligação Competitiva , Células CHO , Cricetinae , Cricetulus , Bases de Dados Factuais , Humanos , Modelos Moleculares , Conformação Molecular , Mimetismo Molecular , Monossacarídeos/farmacologia , Oligopeptídeos/farmacologia , Ensaio Radioligante , Receptores de Somatostatina/antagonistas & inibidores , Estereoisomerismo , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA