Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Appl Opt ; 62(36): 9568-9576, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38108782

RESUMO

X-ray reflectance and film stress were measured for 12 bilayer and trilayer reflective interference coatings and compared with a single-layer Ir coating. The interference coatings comprise a base layer of W, Pt, or Ir, top layers of either C or B 4 C, and, in the case of the trilayer coatings, middle layers of either Co or Ni. The coatings were deposited by magnetron sputtering. Film stress was measured using the wafer curvature technique, while X-ray reflectance was measured at grazing incidence over the ∼0.1-10k e V energy band using synchrotron radiation. Re-measurements over a period of more than two years of both stress and X-ray reflectance were used to assess temporal stability. The X-ray reflectance of all 12 bilayer and trilayer coatings was found to be both stable over time and substantially higher than single-layer Ir over much of the energy range investigated, particularly below ∼4k e V, except near the B and C K-edges, and the Co and Ni L-edges, where we observe sharp, narrow drops in reflectance due to photo-absorption in layers containing these materials. Film stress was found to be substantially smaller than single-layer Ir in all cases as well; however, film stress was also found to change over time for all coatings (including the single-layer Ir coating). The effective area of future X-ray telescopes will be substantially higher if these high reflectance bilayer and/or trilayer coatings are used in place of single-layer coatings. Additionally, the smaller film stresses found in the bilayer and trilayer coatings relative to single-layer Ir will reduce coating-stress-driven mirror deformations. Nevertheless, as all the interference films studied here have stresses that are far from zero (albeit smaller than that of single-layer Ir), methods to mitigate such deformations must be developed in order to construct high-angular-resolution telescopes using thin mirror segments. Furthermore, unless film stress can be sufficiently stabilized over time, perhaps through thermal annealing, any such mitigation methods must also account for the temporal instability of film stress that was found in all coatings investigated here.

2.
Sci Adv ; 6(51)2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33328228

RESUMO

The analysis of chemical states and morphology in nanomaterials is central to many areas of science. We address this need with an ultrahigh-resolution scanning transmission soft x-ray microscope. Our instrument provides multiple analysis tools in a compact assembly and can achieve few-nanometer spatial resolution and high chemical sensitivity via x-ray ptychography and conventional scanning microscopy. A novel scanning mechanism, coupled to advanced x-ray detectors, a high-brightness x-ray source, and high-performance computing for analysis provide a revolutionary step forward in terms of imaging speed and resolution. We present x-ray microscopy with 8-nm full-period spatial resolution and use this capability in conjunction with operando sample environments and cryogenic imaging, which are now routinely available. Our multimodal approach will find wide use across many fields of science and facilitate correlative analysis of materials with other types of probes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA