Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Cell ; 160(6): 1125-34, 2015 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-25768908

RESUMO

Circular RNAs (circRNAs), formed by non-sequential back-splicing of pre-mRNA transcripts, are a widespread form of non-coding RNA in animal cells. However, it is unclear whether the majority of circRNAs represent splicing by-products without function or are produced in a regulated manner to carry out specific cellular functions. We show that hundreds of circRNAs are regulated during human epithelial-mesenchymal transition (EMT) and find that the production of over one-third of abundant circRNAs is dynamically regulated by the alternative splicing factor, Quaking (QKI), which itself is regulated during EMT. Furthermore, by modulating QKI levels, we show the effect on circRNA abundance is dependent on intronic QKI binding motifs. Critically, the addition of QKI motifs is sufficient to induce de novo circRNA formation from transcripts that are normally linearly spliced. These findings demonstrate circRNAs are both purposefully synthesized and regulated by cell-type specific mechanisms, suggesting they play specific biological roles in EMT.


Assuntos
Transição Epitelial-Mesenquimal , Proteínas de Ligação a RNA/metabolismo , RNA/metabolismo , Linhagem Celular , Éxons , Humanos , Íntrons , Splicing de RNA , RNA Circular
2.
Nucleic Acids Res ; 52(3): 1387-1403, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38015468

RESUMO

While the majority of circRNAs are formed from infrequent back-splicing of exons from protein coding genes, some can be produced at quite high level and in a regulated manner. We describe the regulation, biogenesis and function of circDOCK1(2-27), a large, abundant circular RNA that is highly regulated during epithelial-mesenchymal transition (EMT) and whose formation depends on the epithelial splicing regulator ESRP1. CircDOCK1(2-27) synthesis in epithelial cells represses cell motility both by diverting transcripts from DOCK1 mRNA production to circRNA formation and by direct inhibition of migration by the circRNA. HITS-CLIP analysis and CRISPR-mediated deletions indicate ESRP1 controls circDOCK1(2-27) biosynthesis by binding a GGU-containing repeat region in intron 1 and detaining its splicing until Pol II completes its 157 kb journey to exon 27. Proximity-dependent biotinylation (BioID) assay suggests ESRP1 may modify the RNP landscape of intron 1 in a way that disfavours communication of exon 1 with exon 2, rather than physically bridging exon 2 to exon 27. The X-ray crystal structure of RNA-bound ESRP1 qRRM2 domain reveals it binds to GGU motifs, with the guanines embedded in clamp-like aromatic pockets in the protein.


Assuntos
Processamento Alternativo , RNA Circular , Proteínas de Ligação a RNA , Proteínas rac de Ligação ao GTP , RNA/genética , RNA/metabolismo , Splicing de RNA , RNA Circular/genética , Humanos , Linhagem Celular Tumoral , Proteínas de Ligação a RNA/metabolismo , Proteínas rac de Ligação ao GTP/genética , Proteínas rac de Ligação ao GTP/metabolismo
3.
EMBO J ; 37(13)2018 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-29871889

RESUMO

Members of the miR-200 family are critical gatekeepers of the epithelial state, restraining expression of pro-mesenchymal genes that drive epithelial-mesenchymal transition (EMT) and contribute to metastatic cancer progression. Here, we show that miR-200c and another epithelial-enriched miRNA, miR-375, exert widespread control of alternative splicing in cancer cells by suppressing the RNA-binding protein Quaking (QKI). During EMT, QKI-5 directly binds to and regulates hundreds of alternative splicing targets and exerts pleiotropic effects, such as increasing cell migration and invasion and restraining tumour growth, without appreciably affecting mRNA levels. QKI-5 is both necessary and sufficient to direct EMT-associated alternative splicing changes, and this splicing signature is broadly conserved across many epithelial-derived cancer types. Importantly, several actin cytoskeleton-associated genes are directly targeted by both QKI and miR-200c, revealing coordinated control of alternative splicing and mRNA abundance during EMT These findings demonstrate the existence of a miR-200/miR-375/QKI axis that impacts cancer-associated epithelial cell plasticity through widespread control of alternative splicing.


Assuntos
Processamento Alternativo/fisiologia , Plasticidade Celular/fisiologia , Transição Epitelial-Mesenquimal/fisiologia , MicroRNAs/fisiologia , Proteínas de Ligação a RNA/fisiologia , Animais , Linhagem Celular Tumoral , Movimento Celular , Cães , Humanos , Células Madin Darby de Rim Canino , Camundongos SCID
4.
RNA ; 25(9): 1202-1210, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31151991

RESUMO

Reverse transcription of RNA is fallible, introducing biases and confounding the quantification of transcript abundance. We demonstrate that circular RNAs (circRNAs) are more subjective to overestimation of transcript abundance than cognate linear RNAs due to their covalently closed, circular form, producing multiple concatameric products from a single priming of reverse transcriptase. We developed SplintQuant, where custom DNA oligonucleotides are ligated by PBCV-1 DNA ligase only when bound to their target RNA. These circRNA-specific DNA oligonucleotides are terminally tagged with universal primers, allowing SplintQuant to accurately quantify even lowly abundant circRNAs through highly specific quantitative PCR (qPCR) in the absence of reverse transcription. SplintQuant is sensitive, specific, highly reproducible, and applicable to the quantification of canonical and noncanonical RNA transcripts including alternative splice variants, gene fusions, and offers a gold-standard approach for accurately quantifying circRNAs.


Assuntos
RNA/genética , Reação em Cadeia da Polimerase em Tempo Real/métodos , Transcrição Reversa/genética , Processamento Alternativo/genética , Viés , Linhagem Celular , Humanos , RNA Circular , Análise de Sequência de RNA/métodos
5.
Nucleic Acids Res ; 46(10): 4966-4977, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29562355

RESUMO

The MADS transcription factors (TF) constitute an ancient family of TF found in all eukaryotes that bind DNA as obligate dimers. Plants have dramatically expanded the functional diversity of the MADS family during evolution by adding protein-protein interaction domains to the core DNA-binding domain, allowing the formation of heterotetrameric complexes. Tetramerization of plant MADS TFs is believed to play a central role in the evolution of higher plants by acting as one of the main determinants of flower formation and floral organ specification. The MADS TF, SEPALLATA3 (SEP3), functions as a central protein-protein interaction hub, driving tetramerization with other MADS TFs. Here, we use a SEP3 splice variant, SEP3Δtet, which has dramatically abrogated tetramerization capacity to decouple SEP3 tetramerization and DNA-binding activities. We unexpectedly demonstrate that SEP3 heterotetramer formation is required for correct termination of the floral meristem, but plays a lesser role in floral organogenesis. The heterotetramer formed by SEP3 and the MADS protein, AGAMOUS, is necessary to activate two target genes, KNUCKLES and CRABSCLAW, which are required for meristem determinacy. These studies reveal unique and highly specific roles of tetramerization in flower development and suggest tetramerization may be required to activate only a subset of target genes in closed chromatin regions.


Assuntos
Proteína AGAMOUS de Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Flores/fisiologia , Proteínas de Homeodomínio/metabolismo , Meristema/fisiologia , Fatores de Transcrição/metabolismo , Proteína AGAMOUS de Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Transporte/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Homeodomínio/genética , Mutação , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , Multimerização Proteica , Fatores de Transcrição/genética
6.
Adv Exp Med Biol ; 1087: 329-343, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30259378

RESUMO

Circular RNAs (circRNAs) are covalently closed, single-stranded transcripts that are ubiquitously expressed in all eukaryotes and even prokaryotic archaea. Although once regarded as splicing artifacts, circRNAs are a novel class of regulatory molecules with diverse biological functions, including regulation of transcription, modulation of alternative splicing, and binding of miRNAs and proteins. The majority of studies of circRNAs have been performed in animals with a focus on the biogenesis, function, and mechanistic characterization of these molecules. In contrast, the study of circRNAs in plants is just emerging. Interestingly, recent circRNA profiling studies in model plant systems show distinct features of plant circRNAs compared with those from animals, including putative roles in stress response, differences in expression patterns, and novel biogenesis mechanisms. This provides a great opportunity to broaden our knowledge of circRNAs using plant model systems, such as Arabidopsis and rice, which are ideal for phenotypic characterization and genetic studies. In this review, we summarize current knowledge of plant circRNAs, discuss their identification and biogenesis, describe potential functions, and propose future perspectives for plant circRNA study.


Assuntos
Regulação da Expressão Gênica de Plantas/genética , RNA de Plantas/genética , RNA/genética , Processamento Alternativo , Sequência de Aminoácidos , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/fisiologia , Biologia Computacional , Éxons/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Domínios Proteicos , RNA/metabolismo , RNA Circular , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA de Plantas/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Estresse Fisiológico/genética
8.
J Exp Bot ; 68(15): 4171-4183, 2017 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-28645169

RESUMO

Arabidopsis thaliana cation exchangers (CAX1 and CAX3) are closely related tonoplast-localized calcium/proton (Ca2+/H+) antiporters that contribute to cellular Ca2+ homeostasis. CAX1 and CAX3 were previously shown to interact in yeast; however, the function of this complex in plants has remained elusive. Here, we demonstrate that expression of CAX1 and CAX3 occurs in guard cells. Additionally, CAX1 and CAX3 are co-expressed in mesophyll tissue in response to wounding or flg22 treatment, due to the induction of CAX3 expression. Having shown that the transporters can be co-expressed in the same cells, we demonstrate that CAX1 and CAX3 can form homomeric and heteromeric complexes in plants. Consistent with the formation of a functional CAX1-CAX3 complex, CAX1 and CAX3 integrated into the yeast genome suppressed a Ca2+-hypersensitive phenotype of mutants defective in vacuolar Ca2+ transport, and demonstrated enzyme kinetics different from those of either CAX protein expressed by itself. We demonstrate that the interactions between CAX proteins contribute to the functioning of stomata, because stomata were more closed in cax1-1, cax3-1, and cax1-1/cax3-1 loss-of-function mutants due to an inability to buffer Ca2+ effectively. We hypothesize that the formation of CAX1-CAX3 complexes may occur in the mesophyll to affect intracellular Ca2+ signaling during defense responses.


Assuntos
Antiporters/genética , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Transporte de Cátions/genética , Estômatos de Plantas/metabolismo , Antiporters/química , Antiporters/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Proteínas de Transporte de Cátions/química , Proteínas de Transporte de Cátions/metabolismo , Células do Mesofilo/metabolismo , Multimerização Proteica , Saccharomyces cerevisiae/genética
9.
Plant Cell ; 23(1): 240-57, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21258004

RESUMO

The physiological role and mechanism of nutrient storage within vacuoles of specific cell types is poorly understood. Transcript profiles from Arabidopsis thaliana leaf cells differing in calcium concentration ([Ca], epidermis <10 mM versus mesophyll >60 mM) were compared using a microarray screen and single-cell quantitative PCR. Three tonoplast-localized Ca(2+) transporters, CAX1 (Ca(2+)/H(+)-antiporter), ACA4, and ACA11 (Ca(2+)-ATPases), were identified as preferentially expressed in Ca-rich mesophyll. Analysis of respective loss-of-function mutants demonstrated that only a mutant that lacked expression of both CAX1 and CAX3, a gene ectopically expressed in leaves upon knockout of CAX1, had reduced mesophyll [Ca]. Reduced capacity for mesophyll Ca accumulation resulted in reduced cell wall extensibility, stomatal aperture, transpiration, CO(2) assimilation, and leaf growth rate; increased transcript abundance of other Ca(2+) transporter genes; altered expression of cell wall-modifying proteins, including members of the pectinmethylesterase, expansin, cellulose synthase, and polygalacturonase families; and higher pectin concentrations and thicker cell walls. We demonstrate that these phenotypes result from altered apoplastic free [Ca(2+)], which is threefold greater in cax1/cax3 than in wild-type plants. We establish CAX1 as a key regulator of apoplastic [Ca(2+)] through compartmentation into mesophyll vacuoles, a mechanism essential for optimal plant function and productivity.


Assuntos
Antiporters/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Cálcio/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Vacúolos/metabolismo , Antiporters/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Transporte de Cátions/genética , Parede Celular/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Mutagênese Insercional , Mutação , Análise de Sequência com Séries de Oligonucleotídeos , Fenótipo , Folhas de Planta/citologia , Folhas de Planta/metabolismo , Estômatos de Plantas/metabolismo , RNA de Plantas/genética , Análise de Célula Única
10.
Methods Mol Biol ; 2765: 299-309, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38381346

RESUMO

Circular RNAs (circRNAs) are a widespread, cell-, tissue-, and disease-specific class of largely non-coding RNA transcripts. These single-stranded, covalently-closed transcripts arise through non-canonical splicing of pre-mRNA, a process called back-splicing. Back-splicing results in circRNAs which are distinguishable from their cognate mRNA as they possess a unique sequence of nucleic acids called the backsplice junction (BSJ). CircRNAs have been shown to play key functional roles in various cellular contexts and achieve this through their interaction with other macromolecules, particularly other RNA molecules and proteins. To elucidate the molecular mechanisms underlying circRNA function, it is necessary to identify these interacting partners. Herein, we present an optimized strategy for the simultaneous purification of the circRNA interactome within eukaryotic cells, allowing the identification of both circRNA-RNA and circRNA-protein interactions.

11.
Wiley Interdiscip Rev RNA ; 14(5): e1786, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37042179

RESUMO

Ribonucleic acid (RNA) molecules are indispensable for cellular homeostasis in healthy and malignant cells. However, the functions of RNA extend well beyond that of a protein-coding template. Rather, both coding and non-coding RNA molecules function through critical interactions with a plethora of cellular molecules, including other RNAs, DNA, and proteins. Deconvoluting this RNA interactome, including the interacting partners, the nature of the interaction, and dynamic changes of these interactions in malignancies has yielded fundamental advances in knowledge and are emerging as a novel therapeutic strategy in cancer. Here, we present an RNA-centric review of recent advances in the field of RNA-RNA, RNA-protein, and RNA-DNA interactomic network analysis and their impact across the Hallmarks of Cancer. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes.


Assuntos
Neoplasias , RNA , Humanos , RNA/genética , RNA/metabolismo , Neoplasias/genética , Proteínas/metabolismo , DNA/metabolismo
12.
Cells ; 12(2)2023 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-36672257

RESUMO

The existence of circular RNA (circRNA) research in mainstream science can be attributed to the contemporary synergism of big data and keen attention to detail by several research groups worldwide. Since the re-emergence of these non-canonical RNA transcripts, seminal advances have been made in understanding their biogenesis, interactome, and functions in diverse fields and a myriad of human diseases. However, most research outputs to date have focused on the ability of highly stable circRNAs to interact with, and impact signalling through, microRNAs. This is likely to be the result of seminal papers in the field ascribing a few remarkable circRNAs as "miRNA sponges". However, the stoichiometric ratio between the (often-lowly-expressed) circRNA and their (commonly-more-abundant) target is rarely in favour of a biologically relevant and functional consequence of these interactions. It is time for yet another revolution in circRNA research to uncover functions beyond their documented ability to bind miRNAs. This Special Issue aims to highlight non-canonical functions for this non-canonical family of RNA molecules.


Assuntos
MicroRNAs , RNA Circular , Humanos , RNA Circular/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Transdução de Sinais
13.
bioRxiv ; 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-38045421

RESUMO

Circular RNAs (circRNAs) are a class of single-stranded, covalently closed RNA that contain a unique back-splice junction (bsj) sequence created by the ligation of their 5' and 3' ends via spliceosome-catalyzed back-splicing. A key step in illuminating the cellular roles of specific circRNAs is via increasing their expression. This is frequently done by transfecting cells with plasmid DNA containing cloned exons from which the circRNA is transcribed, flanked by sequences that promote back-splicing. We observed that commonly used plasmids lead to the production of circRNAs with molecular scars at the circRNA bsj. Stepwise redesign of the cloning vector corrected this problem, ensuring bona fide circRNAs are produced with their natural bsj at high efficiency. The fidelity of circRNAs produced from this new construct was validated by RNA sequencing and also functionally validated. To increase the utility of this modified resource for expressing circRNA, we developed an expanded set of vectors incorporating this design that (i) enables selection with a variety of antibiotics and fluorescent proteins, (ii) employs a range of promoters varying in promoter strength and (iii) generated a complementary set of lentiviral plasmids for difficult-to-transfect cells. These resources provide a novel and versatile toolkit for high-efficiency and scarless overexpression of circular RNAs that fulfill a critical need for the investigation of circRNA function.

14.
Cells ; 12(9)2023 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-37174737

RESUMO

Trinucleotide repeat disorders comprise ~20 severe, inherited, human neuromuscular and neurodegenerative disorders, which result from an abnormal expansion of repetitive sequences in the DNA. The most common of these, Huntington's disease (HD), results from expansion of the CAG repeat region in exon 1 of the HTT gene via an unknown mechanism. Since non-coding RNAs have been implicated in the initiation and progression of many diseases, herein we focused on a circular RNA (circRNA) molecule arising from non-canonical splicing (backsplicing) of HTT pre-mRNA. The most abundant circRNA from HTT, circHTT(2-6), was found to be more highly expressed in the frontal cortex of HD patients, compared with healthy controls, and positively correlated with CAG repeat tract length. Furthermore, the mouse orthologue (mmu_circHTT(2-6)) was found to be enriched within the brain and specifically the striatum, a region enriched for medium spiny neurons that are preferentially lost in HD. Transgenic overexpression of circHTT(2-6) in two human cell lines-SH-SY5Y and HEK293-reduced cell proliferation and nuclear size without affecting cell cycle progression or cellular size, or altering the CAG repeat region length within HTT. CircHTT(2-6) overexpression did not alter total HTT protein levels, but reduced its nuclear localisation. As these phenotypic and genotypic changes resemble those observed in HD patients, our results suggest that circHTT(2-6) may play a functional role in the pathophysiology of this disease.


Assuntos
Doença de Huntington , Neuroblastoma , Humanos , Camundongos , Animais , Doença de Huntington/metabolismo , RNA Circular/genética , Células HEK293 , Animais Geneticamente Modificados
15.
Cell Rep ; 42(9): 113074, 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37676766

RESUMO

To produce a diverse antibody repertoire, immunoglobulin heavy-chain (Igh) loci undergo large-scale alterations in structure to facilitate juxtaposition and recombination of spatially separated variable (VH), diversity (DH), and joining (JH) genes. These chromosomal alterations are poorly understood. Uncovering their patterns shows how chromosome dynamics underpins antibody diversity. Using tiled Capture Hi-C, we produce a comprehensive map of chromatin interactions throughout the 2.8-Mb Igh locus in progenitor B cells. We find that the Igh locus folds into semi-rigid subdomains and undergoes flexible looping of the VH genes to its 3' end, reconciling two views of locus organization. Deconvolution of single Igh locus conformations using polymer simulations identifies thousands of different structures. This heterogeneity may underpin the diversity of V(D)J recombination events. All three immunoglobulin loci also participate in a highly specific, developmentally regulated network of interchromosomal interactions with genes encoding B cell-lineage factors. This suggests a model of interchromosomal coordination of B cell development.


Assuntos
Linfócitos B , Imunoglobulinas , Recombinação V(D)J/genética , Genes de Cadeia Pesada de Imunoglobulina/genética , Células Precursoras de Linfócitos B
16.
Sci Adv ; 9(43): eadf1332, 2023 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-37878712

RESUMO

Cancers in the central nervous system resist therapies effective in other cancers, possibly due to the unique biochemistry of the human brain microenvironment composed of cerebrospinal fluid (CSF). However, the impact of CSF on cancer cells and therapeutic efficacy is unknown. Here, we examined the effect of human CSF on glioblastoma (GBM) tumors from 25 patients. We found that CSF induces tumor cell plasticity and resistance to standard GBM treatments (temozolomide and irradiation). We identified nuclear protein 1 (NUPR1), a transcription factor hampering ferroptosis, as a mediator of therapeutic resistance in CSF. NUPR1 inhibition with a repurposed antipsychotic, trifluoperazine, enhanced the killing of GBM cells resistant to chemoradiation in CSF. The same chemo-effective doses of trifluoperazine were safe for human neurons and astrocytes derived from pluripotent stem cells. These findings reveal that chemoradiation efficacy decreases in human CSF and suggest that combining trifluoperazine with standard care may improve the survival of patients with GBM.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/metabolismo , Trifluoperazina/farmacologia , Trifluoperazina/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Temozolomida/farmacologia , Quimiorradioterapia , Linhagem Celular Tumoral , Microambiente Tumoral
18.
Cancer Cell ; 41(7): 1309-1326.e10, 2023 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-37295428

RESUMO

The first step of oncogenesis is the acquisition of a repertoire of genetic mutations to initiate and sustain the malignancy. An important example of this initiation phase in acute leukemias is the formation of a potent oncogene by chromosomal translocations between the mixed lineage leukemia (MLL) gene and one of 100 translocation partners, known as the MLL recombinome. Here, we show that circular RNAs (circRNAs)-a family of covalently closed, alternatively spliced RNA molecules-are enriched within the MLL recombinome and can bind DNA, forming circRNA:DNA hybrids (circR loops) at their cognate loci. These circR loops promote transcriptional pausing, proteasome inhibition, chromatin re-organization, and DNA breakage. Importantly, overexpressing circRNAs in mouse leukemia xenograft models results in co-localization of genomic loci, de novo generation of clinically relevant chromosomal translocations mimicking the MLL recombinome, and hastening of disease onset. Our findings provide fundamental insight into the acquisition of chromosomal translocations by endogenous RNA carcinogens in leukemia.


Assuntos
Leucemia , Translocação Genética , Animais , Camundongos , Humanos , RNA Circular/genética , Proteína de Leucina Linfoide-Mieloide/genética , Proteína de Leucina Linfoide-Mieloide/metabolismo , Leucemia/genética , Leucemia/patologia , DNA , Proteínas de Fusão Oncogênica/genética
19.
New Phytol ; 193(4): 859-66, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22403822

RESUMO

The plant ionome varies both inter- and intraspecifically despite the highly conserved roles for particular elements across the plant kingdom. Element storage requires transport across the plasma membrane and commonly deposition within the central vacuole. Therefore, tonoplast transport characteristics can be highly influential in controlling the plant ionome. As a result, individual cell types of the same plant, each with unique transcriptomes and vacuolar proteomes, can display very different elemental profiles. Here we address the use of natural variation in Arabidopsis thaliana for identifying genes involved in elemental accumulation. We present a conceptual framework, exploiting publicly available leaf ionomic and transcriptomic data across 31 Arabidopsis accessions, that promises to accelerate conventional forward genetics approaches for candidate gene discovery. Utilizing this framework, we identify numerous genes with documented roles in accumulation of calcium, magnesium and zinc and implicate additional candidate genes. Where appropriate, we discuss their role in cell-specific elemental accumulation. Currently, this framework could represent an alternate approach for identifying genes suitable for element biofortification of plants. Integration of additional cell-specific and whole-plant 'omics' datasets across Arabidopsis accessions under diverse environmental conditions should enable this concept to be developed into a scalable and robust tool for linking genotype and phenotype.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Cálcio/metabolismo , Magnésio/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Transcriptoma , Zinco/metabolismo
20.
New Phytol ; 190(3): 583-94, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21261624

RESUMO

• Magnesium accumulates at high concentrations in dicotyledonous leaves but it is not known in which leaf cell types it accumulates, by what mechanism this occurs and the role it plays when stored in the vacuoles of these cell types. • Cell-specific vacuolar elemental profiles from Arabidopsis thaliana (Arabidopsis) leaves were analysed by X-ray microanalysis under standard and serpentine hydroponic growth conditions and correlated with the cell-specific complement of magnesium transporters identified through microarray analysis and quantitative polymerase chain reaction (qPCR). • Mesophyll cells accumulate the highest vacuolar concentration of magnesium in Arabidopsis leaves and are enriched for members of the MGT/MRS2 family of magnesium transporters. Specifically, AtMGT2/AtMRS2-1 and AtMGT3/AtMRS2-5 were shown to be targeted to the tonoplast and corresponding T-DNA insertion lines had perturbed mesophyll-specific vacuolar magnesium accumulation under serpentine conditions. Furthermore, transcript abundance of these genes was correlated with the accumulation of magnesium under serpentine conditions, in a low calcium-accumulating mutant and across 23 Arabidopsis ecotypes varying in their leaf magnesium concentrations. • We implicate magnesium as a key osmoticum required to maintain growth in low calcium concentrations in Arabidopsis. Furthermore, two tonoplast-targeted members of the MGT/MRS2 family are shown to contribute to this mechanism under serpentine conditions.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Magnésio/metabolismo , Células do Mesofilo/metabolismo , Vacúolos/metabolismo , Arabidopsis/citologia , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Transporte Biológico , Proteínas de Transporte de Cátions/genética , Clorofila/metabolismo , DNA Bacteriano/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Mutagênese Insercional/genética , Concentração Osmolar , Protoplastos/metabolismo , Frações Subcelulares/metabolismo , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA