Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Nature ; 604(7904): 134-140, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35130559

RESUMO

The SARS-CoV-2 virus has infected more than 261 million people and has led to more than 5 million deaths in the past year and a half1 ( https://www.who.org/ ). Individuals with SARS-CoV-2 infection typically develop mild-to-severe flu-like symptoms, whereas infection of a subset of individuals leads to severe-to-fatal clinical outcomes2. Although vaccines have been rapidly developed to combat SARS-CoV-2, there has been a dearth of antiviral therapeutics. There is an urgent need for therapeutics, which has been amplified by the emerging threats of variants that may evade vaccines. Large-scale efforts are underway to identify antiviral drugs. Here we screened approximately 18,000 drugs for antiviral activity using live virus infection in human respiratory cells and validated 122 drugs with antiviral activity and selectivity against SARS-CoV-2. Among these candidates are 16 nucleoside analogues, the largest category of clinically used antivirals. This included the antivirals remdesivir and molnupiravir, which have been approved for use in COVID-19. RNA viruses rely on a high supply of nucleoside triphosphates from the host to efficiently replicate, and we identified a panel of host nucleoside biosynthesis inhibitors as antiviral. Moreover, we found that combining pyrimidine biosynthesis inhibitors with antiviral nucleoside analogues synergistically inhibits SARS-CoV-2 infection in vitro and in vivo against emerging strains of SARS-CoV-2, suggesting a clinical path forward.


Assuntos
Antivirais , Avaliação Pré-Clínica de Medicamentos , Nucleosídeos , Pirimidinas , SARS-CoV-2 , Monofosfato de Adenosina/análogos & derivados , Alanina/análogos & derivados , Antivirais/farmacologia , COVID-19/virologia , Linhagem Celular , Citidina/análogos & derivados , Humanos , Hidroxilaminas , Nucleosídeos/análogos & derivados , Nucleosídeos/farmacologia , Pirimidinas/farmacologia , SARS-CoV-2/efeitos dos fármacos , Tratamento Farmacológico da COVID-19
2.
PLoS Pathog ; 18(7): e1010632, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35789345

RESUMO

Enteroviruses (EVs) are among the most prevalent viruses worldwide. They are characterized by a high genetic and phenotypic diversity, being able to cause a plethora of symptoms. EV-D68, a respiratory EV, and EV-D94, an enteric EV, represent an interesting paradigm of EV tropism heterogeneity. They belong to the same species, but display distinct phenotypic characteristics and in vivo tropism. Here, we used these two viruses as well as relevant 3D respiratory, intestinal and neural tissue culture models, to highlight key distinctive features of enteric and respiratory EVs. We emphasize the critical role of temperature in restricting EV-D68 tissue tropism. Using transcriptomic analysis, we underscore fundamental differences between intestinal and respiratory tissues, both in the steady-state and in response to infection. Intestinal tissues present higher cell proliferation rate and are more immunotolerant than respiratory tissues. Importantly, we highlight the different strategies applied by EV-D94 and EV-D68 towards the host antiviral response of intestinal and respiratory tissues. EV-D68 strongly activates antiviral pathways while EV-D94, on the contrary, barely induces any host defense mechanisms. In summary, our study provides an insightful characterization of the differential pathogenesis of EV-D68 and EV-D94 and the interplay with their main target tissues.


Assuntos
Enterovirus Humano D , Infecções por Enterovirus , Enterovirus , Infecções Respiratórias , Antígenos Virais , Antivirais , Enterovirus Humano D/fisiologia , Humanos , Tropismo
3.
Virol J ; 21(1): 78, 2024 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-38566231

RESUMO

Chronic obstructive pulmonary disease (COPD) affects over 250 million individuals globally and stands as the third leading cause of mortality. Respiratory viral infections serve as the primary drivers of acute exacerbations, hastening the decline in lung function and worsening the prognosis. Notably, Human Parainfluenza Virus type 3 (HPIV-3) is responsible for COPD exacerbations with a frequency comparable to that of Respiratory Syncytial Virus and Influenza viruses. However, the impact of HPIV-3 on respiratory epithelium within the context of COPD remains uncharacterized.In this study, we employed in vitro reconstitution of lower airway epithelia from lung tissues sourced from healthy donors (n = 4) and COPD patients (n = 5), maintained under air-liquid interface conditions. Through a next-generation sequencing-based transcriptome analysis, we compared the cellular response to HPIV-3 infection.Prior to infection, COPD respiratory epithelia exhibited a pro-inflammatory profile, notably enriched in canonical pathways linked to antiviral response, B cell signaling, IL-17 signaling, and epithelial-mesenchymal transition, in contrast to non-COPD epithelia. Intriguingly, post HPIV-3 infection, only non-COPD epithelia exhibited significant enrichment in interferon signaling, pattern recognition receptors of viruses and bacteria, and other pathways involved in antiviral responses. This deficiency could potentially hinder immune cell recruitment essential for controlling viral infections, thus fostering prolonged viral presence and persistent inflammation.


Assuntos
Doença Pulmonar Obstrutiva Crônica , Vírus Sincicial Respiratório Humano , Viroses , Vírus , Humanos , Vírus da Parainfluenza 3 Humana , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Epitélio , Antivirais/uso terapêutico
4.
Arch Microbiol ; 205(7): 272, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37391548

RESUMO

In the COVID-19 pandemic, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), face masks have become a very important safety measure against the main route of transmission of the virus: droplets and aerosols. Concerns that masks contaminated with SARS-CoV-2 infectious particles could be a risk for self-contamination have emerged early in the pandemic as well as solutions to mitigate this risk. The coating of masks with sodium chloride, an antiviral and non-hazardous to health chemical, could be an option for reusable masks. To assess the antiviral properties of salt coatings deposited onto common fabrics by spraying and dipping, the present study established an in vitro bioassay using three-dimensional airway epithelial cell cultures and SARS-CoV-2 virus. Virus particles were given directly on salt-coated material, collected, and added to the cell cultures. Infectious virus particles were measured by plaque forming unit assay and in parallel viral genome copies were quantified over time. Relative to noncoated material, the sodium chloride coating significantly reduced virus replication, confirming the effectiveness of the method to prevent fomite contamination with SARS-CoV-2. In addition, the lung epithelia bioassay proved to be suitable for future evaluation of novel antiviral coatings.


Assuntos
COVID-19 , Cloreto de Sódio , Humanos , Cloreto de Sódio/farmacologia , SARS-CoV-2 , Pandemias , COVID-19/prevenção & controle , Antivirais/farmacologia
5.
Int J Mol Sci ; 23(7)2022 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-35409423

RESUMO

The nasal epithelium is a key portal for infection by respiratory viruses such as SARS-CoV-2 and represents an important target for prophylactic and therapeutic interventions. In the present study, we test the safety and efficacy of a newly developed nasal spray (AM-301, marketed as Bentrio) against infection by SARS-CoV-2 and its Delta variant on an in vitro 3D-model of the primary human nasal airway epithelium. Safety was assessed in assays for tight junction integrity, cytotoxicity and cilia beating frequency. Efficacy against SARS-CoV-2 infection was evaluated in pre-viral load and post-viral load application on airway epithelium. No toxic effects of AM-301 on the nasal epithelium were found. Prophylactic treatment with AM-301 significantly reduced viral titer vs. controls over 4 days, reaching a maximum reduction of 99% in case of infection from the wild-type SARS-CoV-2 variant and more than 83% in case of the Delta variant. When AM-301 administration was started 24 h after infection, viral titer was reduced by about 12-folds and 3-folds on Day 4. The results suggest that AM-301 is safe and significantly decelerates SARS-CoV-2 replication in cell culture inhibition assays of prophylaxis (pre-viral load application) and mitigation (post-viral load application). Its physical (non-pharmaceutical) mechanism of action, safety and efficacy warrant additional investigations both in vitro and in vivo for safety and efficacy against a broad spectrum of airborne viruses and allergens.


Assuntos
Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Epitélio , Humanos , Mucosa Nasal , Sprays Nasais
6.
Small ; 17(15): e2006027, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33480475

RESUMO

Due to economic, practical, ethical, and scientific reasons, researchers, among others, are pushing for alternative in vitro test methods to replace or reduce existing animal experiments. In order for these tests to be more broadly used by the industrial sector and regulatory bodies, orchestrated efforts are required to show the robustness and reliability of in vitro methods, which can accelerate the use for early screening testing. Another way of increasing the use of alternatives is to coordinate validation studies, that is, multi-laboratory trials, and to gain regulatory approval and instatement as test guidelines or standard method. However, awareness of the exact standardization, validation, and approval process has been a major obstacle for many researchers. Herein, the process has been broken down into three main phases: i) test method development; ii) intra- and inter-laboratory validation; and iii) regulatory acceptance. This general process applies to all alternative methods seeking validation and approval, although the intricacies of different toxicological endpoints and/or chemical sectors may lead to additional work, particularly in the validation stage. The authors' aim is to provide insight in the development process of alternative methods with a focus on in vitro cell culture methods over validation to regulatory acceptance.


Assuntos
Alternativas aos Testes com Animais , Animais , Técnicas In Vitro , Padrões de Referência , Reprodutibilidade dos Testes
7.
Eur Arch Otorhinolaryngol ; 278(8): 2837-2842, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33392764

RESUMO

PURPOSE: Nasal irrigation is an effective method for alleviating several nasal symptoms and regular seawater-based nasal irrigation is useful for maintaining nasal hygiene which is essential for appropriate functioning of the nose and for preventing airborne particles including some pollutants, pathogens, and allergens from moving further in the respiratory system. However, safety studies on seawater-based nasal irrigation are scarce. In this study, the safety and efficacy of a diluted isotonic seawater solution (Stérimar Nasal Hygiene, SNH) in maintaining nasal homeostasis were evaluated in vitro. METHODS: Safety was assessed by measuring tissue integrity via transepithelial electrical resistance (TEER). Efficacy was measured by mucociliary clearance (MCC), mucin secretion, and tissue re-epithelization (wound repair) assays. All assays were performed using a 3D reconstituted human nasal epithelium model. RESULTS: In SNH-treated tissues, TEER values were statistically significantly lower than the untreated tissues; however, the values were above the tissue integrity limit. SNH treatment significantly increased MCC (88 vs. 36 µm/s, p < 0.001) and mucin secretion (1717 vs. 1280 µg/ml, p < 0.001) as compared to untreated cultures. Faster wound closure profile was noted upon pre-SNH treatment as compared to classical isotonic saline solution pre-treatment (90.5 vs. 50.7% wound closure 22 h after wound generation). CONCLUSION: SNH did not compromise the integrity of the nasal epithelium in vitro. Furthermore, SNH was effective for removal of foreign particles through MCC increase and for enhancing wound repair on nasal mucosa.


Assuntos
Lavagem Nasal , Mucosa Nasal , Humanos , Soluções Isotônicas , Depuração Mucociliar , Água do Mar
8.
Altern Lab Anim ; 49(3): 93-110, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34225465

RESUMO

Experimental systems that faithfully replicate human physiology at cellular, tissue and organ level are crucial to the development of efficacious and safe therapies with high success rates and low cost. The development of such systems is challenging and requires skills, expertise and inputs from a diverse range of experts, such as biologists, physicists, engineers, clinicians and regulatory bodies. Kirkstall Limited, a biotechnology company based in York, UK, organised the annual conference, Advances in Cell and Tissue Culture (ACTC), which brought together people having a variety of expertise and interests, to present and discuss the latest developments in the field of cell and tissue culture and in vitro modelling. The conference has also been influential in engaging animal welfare organisations in the promotion of research, collaborative projects and funding opportunities. This report describes the proceedings of the latest ACTC conference, which was held virtually on 30th September and 1st October 2020, and included sessions on in vitro models in the following areas: advanced skin and respiratory models, neurological disease, cancer research, advanced models including 3-D, fluid flow and co-cultures, diabetes and other age-related disorders, and animal-free research. The roundtable session on the second day was very interactive and drew huge interest, with intriguing discussion taking place among all participants on the theme of replacement of animal models of disease.


Assuntos
Dispositivos Lab-On-A-Chip , Pele , Animais , Técnicas de Cocultura , Humanos , Modelos Animais
9.
PLoS Pathog ; 14(8): e1007190, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30075025

RESUMO

Enterovirus 71 (EV71) causes hand, foot and mouth disease, a mild and self-limited illness that is sometimes associated with severe neurological complications. EV71 neurotropic determinants remain ill-defined to date. We previously identified a mutation in the VP1 capsid protein (L97R) that was acquired over the course of a disseminated infection in an immunocompromised host. The mutation was absent in the respiratory tract but was present in the gut (as a mixed population) and in blood and cerebrospinal fluid (as a dominant species). In this study, we demonstrated that this mutation does not alter the dependence of EV71 on the human scavenger receptor class B2 (SCARB2), while it enables the virus to bind to the heparan sulfate (HS) attachment receptor and modifies viral tropism in cell lines and in respiratory, intestinal and neural tissues. Variants with VP197L or VP197R were able to replicate to high levels in intestinal and neural tissues and, to a lesser extent, in respiratory tissues, but their preferred entry site (from the luminal or basal tissue side) differed in respiratory and intestinal tissues and correlated with HS expression levels. These data account for the viral populations sequenced from the patient's respiratory and intestinal samples and suggest that improved dissemination, resulting from an acquired ability to bind HS, rather than specific neurotropism determinants, enabled the virus to reach and infect the central nervous system. Finally, we showed that iota-carrageenan, a highly sulfated polysaccharide, efficiently blocks the replication of HS-dependent variants in cells and 2D neural cultures. Overall, the results of this study emphasize the importance of HS binding in EV71 pathogenesis and open new avenues for the development of antiviral molecules that may prevent this virus's dissemination.


Assuntos
Proteínas do Capsídeo/genética , Enterovirus Humano A/fisiologia , Doença de Mão, Pé e Boca/virologia , Heparitina Sulfato/metabolismo , Tropismo Viral/genética , Animais , Enterovirus Humano A/patogenicidade , Doença de Mão, Pé e Boca/genética , Doença de Mão, Pé e Boca/metabolismo , Humanos , Proteínas de Membrana Lisossomal/metabolismo , Camundongos , Mutação , Receptores Depuradores/metabolismo , Replicação Viral/genética
10.
PLoS Pathog ; 14(4): e1006962, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29630666

RESUMO

Despite their genetic similarities, enteric and respiratory enteroviruses (EVs) have highly heterogeneous biophysical properties and cause a vast diversity of human pathologies. In vitro differences include acid sensitivity, optimal growth temperature and tissue tropism, which reflect a preferential in vivo replication in the respiratory or gastrointestinal tract and are thus key determinants of EV virulence. To investigate the underlying cause of these differences, we generated chimeras at the capsid-level between EV-D68 (a respiratory EV) and EV-D94 (an enteric EV). Although some chimeras were nonfunctional, EV-D94 with both the capsid and 2A protease or the capsid only of EV-D68 were both viable. Using this latter construct, we performed several functional assays, which indicated that capsid proteins determine acid sensitivity and tropism in cell lines and in respiratory, intestinal and neural tissues. Additionally, capsid genes were shown to also participate in determining the optimal growth temperature, since EV-D94 temperature adaptation relied on single mutations in VP1, while constructs with EV-D68 capsid could not adapt to higher temperatures. Finally, we demonstrate that EV-D68 maintains residual binding-capacity after acid-treatment despite a loss of infectivity. In contrast, non-structural rather than capsid proteins modulate the innate immune response in tissues. These unique biophysical insights expose another layer in the phenotypic diversity of one of world's most prevalent pathogens and could aid target selection for vaccine or antiviral development.


Assuntos
Ácidos/química , Proteínas do Capsídeo/metabolismo , Infecções por Enterovirus/virologia , Enterovirus/fisiologia , Intestinos/virologia , Neurônios/virologia , Sistema Respiratório/virologia , Proteínas do Capsídeo/genética , Enterovirus/classificação , Infecções por Enterovirus/genética , Infecções por Enterovirus/metabolismo , Humanos , Temperatura , Tropismo Viral
11.
J Nanobiotechnology ; 18(1): 129, 2020 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-32912214

RESUMO

Liquid deposit mimicking surface aerosolization in the airway is a promising strategy for targeting bronchopulmonary tumors with reduced doses of nanoparticle (NPs). In mimicking and studying such delivery approaches, the use of human in vitro 3D culture models can bridge the gap between 2D cell culture and small animal investigations. Here, we exposed airway epithelia to liquid-apical gadolinium-based AGuIX® NPs in order to determine their safety profile. We used a multiparametric methodology to investigate the NP's distribution over time in both healthy and tumor-bearing 3D models. AGuIX® NPs were able to target tumor cells in the absence of specific surface functionalization, without evidence of toxicity. Finally, we validated the therapeutic potential of this hybrid theranostic AGuIX® NPs upon radiation exposure in this model. In conclusion, 3D cell cultures can efficiently mimic the normal and tumor-bearing airway epitheliums, providing an ethical and accessible model for the investigation of nebulized NPs.


Assuntos
Epitélio/efeitos dos fármacos , Gadolínio/uso terapêutico , Nanopartículas/uso terapêutico , Sistema Respiratório/efeitos dos fármacos , Células A549/patologia , Animais , Técnicas de Cultura de Células , Ciclo Celular , Proliferação de Células , Sistemas de Liberação de Medicamentos/métodos , Gadolínio/química , Humanos , Pulmão , Neoplasias Pulmonares/tratamento farmacológico , Nanopartículas/química
12.
J Allergy Clin Immunol ; 141(6): 2074-2084, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-28797733

RESUMO

BACKGROUND: The leading cause of acute illnesses, respiratory viruses, typically cause self-limited diseases, although severe complications can occur in fragile patients. Rhinoviruses (RVs), respiratory enteroviruses (EVs), influenza virus, respiratory syncytial viruses (RSVs), and coronaviruses are highly prevalent respiratory pathogens, but because of the lack of reliable animal models, their differential pathogenesis remains poorly characterized. OBJECTIVE: We sought to compare infections by respiratory viruses isolated from clinical specimens using reconstituted human airway epithelia. METHODS: Tissues were infected with RV-A55, RV-A49, RV-B48, RV-C8, and RV-C15; respiratory EV-D68; influenza virus H3N2; RSV-B; and human coronavirus (HCoV)-OC43. Replication kinetics, cell tropism, effect on tissue integrity, and cytokine secretion were compared. Viral adaptation and tissue response were assessed through RNA sequencing. RESULTS: RVs, RSV-B, and HCoV-OC43 infected ciliated cells and caused no major cell death, whereas H3N2 and EV-D68 induced ciliated cell loss and tissue integrity disruption. H3N2 was also detected in rare goblet and basal cells. All viruses, except RV-B48 and HCoV-OC43, altered cilia beating and mucociliary clearance. H3N2 was the strongest cytokine inducer, and HCoV-OC43 was the weakest. Persistent infection was observed in all cases. RNA sequencing highlighted perturbation of tissue metabolism and induction of a transient but important immune response at 4 days after infection. No majority mutations emerged in the viral population. CONCLUSION: Our results highlight the differential in vitro pathogenesis of respiratory viruses during the acute infection phase and their ability to persist under immune tolerance. These data help to appreciate the range of disease severity observed in vivo and the occurrence of chronic respiratory tract infections in immunocompromised hosts.


Assuntos
Infecções por Vírus de RNA/fisiopatologia , Infecções por Vírus de RNA/virologia , Mucosa Respiratória/virologia , Humanos , Vírus de RNA
13.
Altern Lab Anim ; 44(5): 479-485, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27805831

RESUMO

This paper highlights the work for which OncoTheis, a Swiss biotechnology company, engaged in the development of innovative bioengineered tissues and organoids for cancer research, was co-awarded the 2015 Lush Science Prize. Noting that the use of animal models failed to lead to the design of effective treatments for cancer, OncoTheis has opted to develop in vitro models based exclusively on human cells. The company currently focuses on lung cancer, which is the leading cause of cancer-related deaths worldwide, with more than one million deaths per year. To address this public health concern, we developed OncoCilAir™, a new 3-D model that mimics in vitro the progression of the disease as it happens in patients. In this system, bronchial and lung tumour cells obtained from discarded surgical tissue are cocultured in a Petri dish to reconstitute a fragment of the human lung. After appropriate differentiation, the culture closely reproduces malignant pulmonary nodules invading a small piece of functional airway tissue. As OncoCilAir includes both healthy and cancerous tissues, it can be used to test tumour-killing activity and the adverse effects of chemotherapies and other anti-cancer drugs. Moreover, a single culture can be maintained for up to three months, which permits studies of longer-term effects, including the assessment of drug resistance and tumour recurrence. OncoCilAir heralds a new generation of integrated in vitro models, which is expected to increase the quality of preclinical research while replacing animal testing.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Mucosa Respiratória/fisiologia , Engenharia Tecidual/métodos , Humanos , Modelos Biológicos , Mucosa Respiratória/efeitos dos fármacos
14.
Altern Lab Anim ; 44(2): 129-66, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27256455

RESUMO

The Family Smoking Prevention and Tobacco Control Act of 2009 established the Food and Drug Administration Center for Tobacco Products (FDA-CTP), and gave it regulatory authority over the marketing, manufacture and distribution of tobacco products, including those termed 'modified risk'. On 8-10 December 2014, IIVS organised a workshop conference, entitled Assessment of In Vitro COPD Models for Tobacco Regulatory Science, to bring together stakeholders representing regulatory agencies, academia, industry and animal protection, to address the research priorities articulated by the FDA-CTP. Specific topics were covered to assess the status of current in vitro technologies as they are applied to understanding the adverse pulmonary events resulting from tobacco product exposure, and in particular, the progression of chronic obstructive pulmonary disease (COPD). The four topics covered were: a) Inflammation and Oxidative Stress; b) Ciliary Dysfunction and Ion Transport; c) Goblet Cell Hyperplasia and Mucus Production; and d) Parenchymal/Bronchial Tissue Destruction and Remodelling. The 2.5 day workshop included 18 expert speakers, plus poster sessions, networking and breakout sessions, which identified key findings and provided recommendations to advance the in vitro technologies and assays used to evaluate tobacco-induced disease etiologies. The workshop summary was reported at the 2015 Society of Toxicology Annual Meeting, and the recommendations led to an IIVS-organised technical workshop in June 2015, entitled Goblet Cell Hyperplasia, Mucus Production, and Ciliary Beating Assays, to assess these assays and to conduct a proof-of-principle multi-laboratory exercise to determine their suitability for standardisation. Here, we report on the proceedings, recommendations and outcomes of the December 2014 workshop, including paths forward to continue the development of non-animal methods to evaluate tissue responses that model the disease processes that may lead to COPD, a major cause of mortality worldwide.


Assuntos
Regulamentação Governamental , Doença Pulmonar Obstrutiva Crônica/etiologia , Produtos do Tabaco/efeitos adversos , Experimentação Animal , Animais , Células Caliciformes/patologia , Humanos , Depuração Mucociliar/fisiologia , Muco/metabolismo , Nicotina/efeitos adversos , Estresse Oxidativo , Produtos do Tabaco/normas , Estados Unidos , United States Food and Drug Administration
15.
J Clin Microbiol ; 53(5): 1775-7, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25694520

RESUMO

We report a fatal case of acute lower respiratory tract disease with human rhinovirus C (HRV-C) as the unique cause in a 19-month-old girl with a history of repeated episodes of bronchiolitis. HRV-C type 8 nucleic acids were observed in respiratory, stool, and cerebrospinal fluid samples, and infectious virions were isolated from patient serum after inoculation onto reconstituted airway epithelia.


Assuntos
Sangue/virologia , Bronquiolite/etiologia , Infecções por Picornaviridae/diagnóstico , Infecções por Picornaviridae/virologia , Rhinovirus/isolamento & purificação , Viremia/diagnóstico , Viremia/virologia , Bronquiolite/complicações , Líquido Cefalorraquidiano/virologia , Evolução Fatal , Fezes/virologia , Feminino , Humanos , Lactente , Infecções por Picornaviridae/patologia , Sistema Respiratório/virologia , Rhinovirus/classificação , Rhinovirus/genética , Viremia/patologia , Cultura de Vírus
16.
bioRxiv ; 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38798406

RESUMO

The use of fixed dose-combinations of antivirals with different mechanisms of action has proven a key in the successful treatment of infections with HIV and HCV. For the treatment of infections with SARS-CoV-2 and possible future epi-/pandemic coronaviruses, it will be important to explore the efficacy of combinations of different drugs, in particular to avoid resistance development, such as in patients with immunodeficiencies. As a first effort, we studied the antiviral potency of combinations of antivirals. To that end, we made use of primary human airway epithelial cell (HAEC) cultures grown at the air-liquid interface that were infected with the beta coronavirus OC43. We found that the triple combination of GS-441524 (parent nucleoside of remdesivir), molnupiravir, and ribavirin resulted in a more pronounced antiviral efficacy than what could be expected from a purely additive antiviral effect. The potency of this triple combination was next tested in SARS-CoV-2 infected hamsters. To that end, for each of the drugs, intentionally suboptimal or even ineffective doses were selected. Yet, in the lungs of all hamsters that received triple prophylactic therapy with suboptimal/inactive doses of GS-441524, molnupiravir, and ribavirin, no infectious virus was detectable. Our finding indicate that co-administration of approved drugs for the treatment of coronavirus infections should be further explored but also against other families of viruses with epidemic and pandemic potential for which no effective antiviral treatment is available.

17.
Front Pharmacol ; 15: 1393702, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38933682

RESUMO

Background: Fexofenadine (FEX) is an antihistamine that acts as an inverse agonist against histamine (HIS) receptor 1 (H1R), which mediates the allergic reaction. Inverse agonists may be more potent than neutral antagonists, as they bind the same receptor as the agonist (HIS) but stabilize the inactive form and induce an opposite pharmacological response, suppressing the basal activity of H1R and preventing HIS from binding. This study aims to establish and validate a model of HIS-induced inflammation based on fully reconstituted human nasal epithelial tissue to assess the activity of FEX as an inverse agonist in this model and explore its link to clinical benefit. Methods: The model was developed using nasal MucilAir™ (Epithelix) in vitro epithelium challenged by HIS. Two conditions were assessed in a side-by-side comparison: tissue was exposed to HIS + FEX with or without FEX pre-treatment (one-hour prior to HIS challenge). Tissue functionality, cytotoxicity, H1R gene expression, and inflammatory cytokines were assessed. Results: HIS at 100 µM induced significant 3.1-fold and 2.2-fold increases for inflammatory biomarkers interleukin (IL)-8 and IL-6, respectively (p < 0.0001), as well as rapid upregulation of H1R mRNA. Inflammatory biomarkers were inhibited by FEX and H1R expression was significantly reduced (p < 0.0001). FEX alone decreased H1R expression at all doses tested. With one-hour FEX pre-treatment, there was significantly higher downregulation of IL-8 (p < 0.05) and further downregulation of H1R expression and IL-6 versus without FEX pre-treatment; the effects of FEX were improved from 22% to 40%. Conclusion: A model of HIS-induced airway inflammation was established based on IL-8, IL-6 and H1R gene expression and was validated with FEX. FEX works as an inverse agonist, with a higher effect when used before+during versus only during the HIS challenge. Taking FEX before+during allergen exposure, or when symptoms first occur, may reduce basal activity and H1R gene expression, providing stronger protection against the worsening of symptoms upon allergen exposure.

18.
Front Microbiol ; 14: 1106945, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36937308

RESUMO

Introduction: Rhinovirus (RV) infections constitute one of the main triggers of asthma exacerbations and an important burden in pediatric yard. However, the mechanisms underlying this association remain poorly understood. Methods: In the present study, we compared infections of in vitro reconstituted airway epithelia originating from asthmatic versus healthy donors with representative strains of RV-A major group and minor groups, RV-C, RV-B, and the respiratory enterovirus EV-D68. Results: We found that viral replication was higher in tissues derived from asthmatic donors for all tested viruses. Viral receptor expression was comparable in non-infected tissues from both groups. After infection, ICAM1 and LDLR were upregulated, while CDHR3 was downregulated. Overall, these variations were related to viral replication levels. The presence of the CDHR3 asthma susceptibility allele (rs6967330) was not associated with increased RV-C replication. Regarding the tissue response, a significantly higher interferon (IFN) induction was demonstrated in infected tissues derived from asthmatic donors, which excludes a defect in IFN-response. Unbiased transcriptomic comparison of asthmatic versus control tissues revealed significant modifications, such as alterations of cilia structure and motility, in both infected and non-infected tissues. These observations were supported by a reduced mucociliary clearance and increased mucus secretion in non-infected tissues from asthmatic donors. Discussion: Altogether, we demonstrated an increased permissiveness and susceptibility to RV and respiratory EV infections in HAE derived from asthmatic patients, which was associated with a global alteration in epithelial cell functions. These results unveil the mechanisms underlying the pathogenesis of asthma exacerbation and suggest interesting therapeutic targets.

19.
Biomed Pharmacother ; 163: 114825, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37148860

RESUMO

Over the last century, the number of epidemics caused by RNA viruses has increased and the current SARS-CoV-2 pandemic has taught us about the compelling need for ready-to-use broad-spectrum antivirals. In this scenario, natural products stand out as a major historical source of drugs. We analyzed the antiviral effect of 4 stilbene dimers [1 (trans-δ-viniferin); 2 (11',13'-di-O-methyl-trans-δ-viniferin), 3 (11,13-di-O-methyl-trans-δ-viniferin); and 4 (11,13,11',13'-tetra-O-methyl-trans-δ-viniferin)] obtained from plant substrates using chemoenzymatic synthesis against a panel of enveloped viruses. We report that compounds 2 and 3 display a broad-spectrum antiviral activity, being able to effectively inhibit several strains of Influenza Viruses (IV), SARS-CoV-2 Delta and, to some extent, Herpes Simplex Virus 2 (HSV-2). Interestingly, the mechanism of action differs for each virus. We observed both a direct virucidal and a cell-mediated effect against IV, with a high barrier to antiviral resistance; a restricted cell-mediated mechanism of action against SARS-CoV-2 Delta and a direct virustatic activity against HSV-2. Of note, while the effect was lost against IV in tissue culture models of human airway epithelia, the antiviral activity was confirmed in this relevant model for SARS-CoV-2 Delta. Our results suggest that stilbene dimer derivatives are good candidate models for the treatment of enveloped virus infections.


Assuntos
COVID-19 , Estilbenos , Vírus , Humanos , Antivirais/uso terapêutico , SARS-CoV-2 , Estilbenos/farmacologia , Herpesvirus Humano 2
20.
Biochem Biophys Rep ; 29: 101187, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34931176

RESUMO

Iota-carrageenan (IC) nasal spray, a medical device approved for treating respiratory viral infections, has previously been shown to inhibit the ability of a variety of respiratory viruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), to enter and replicate in the cell by interfering with the virus binding to the cell surface. The aim of this study was to further investigate the efficacy and safety of IC in SARS-CoV-2 infection in advanced in vitro models of the human respiratory epithelium, the primary target and entry port for SARS-CoV-2. We extended the in vitro safety assessment of nebulized IC in a 3-dimensional model of reconstituted human bronchial epithelium, and we demonstrated the efficacy of IC in protecting reconstituted nasal epithelium against viral infection and replication of a patient-derived SARS-CoV-2 strain. The results obtained from these two advanced models of human respiratory tract epithelia confirm previous findings from in vitro SARS-CoV-2 infection assays and demonstrate that topically applied IC can effectively prevent SARS-CoV-2 infection and replication. Moreover, the absence of toxicity and functional and structural impairment of the mucociliary epithelium demonstrates that the nebulized IC is well tolerated.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA