Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cerebellum ; 2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38279000

RESUMO

This study aimed to assess the responsiveness to the rehabilitation of three trunk acceleration-derived gait indexes, namely the harmonic ratio (HR), the short-term longest Lyapunov's exponent (sLLE), and the step-to-step coefficient of variation (CV), in a sample of subjects with primary degenerative cerebellar ataxia (swCA), and investigate the correlations between their improvements (∆), clinical characteristics, and spatio-temporal and kinematic gait features. The trunk acceleration patterns in the antero-posterior (AP), medio-lateral (ML), and vertical (V) directions during gait of 21 swCA were recorded using a magneto-inertial measurement unit placed at the lower back before (T0) and after (T1) a period of inpatient rehabilitation. For comparison, a sample of 21 age- and gait speed-matched healthy subjects (HSmatched) was also included. At T1, sLLE in the AP (sLLEAP) and ML (sLLEML) directions significantly improved with moderate to large effect sizes, as well as SARA scores, stride length, and pelvic rotation. sLLEML and pelvic rotation also approached the HSmatched values at T1, suggesting a normalization of the parameter. HRs and CV did not significantly modify after rehabilitation. ∆sLLEML correlated with ∆ of the gait subscore of the SARA scale (SARAGAIT) and ∆stride length and ∆sLLEAP correlated with ∆pelvic rotation and ∆SARAGAIT. The minimal clinically important differences for sLLEML and sLLEAP were ≥ 36.16% and ≥ 28.19%, respectively, as the minimal score reflects a clinical improvement in SARA scores. When using inertial measurement units, sLLEAP and sLLEML can be considered responsive outcome measures for assessing the effectiveness of rehabilitation on trunk stability during walking in swCA.

2.
Neurobiol Learn Mem ; 203: 107776, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37236300

RESUMO

The contextual fear conditioning (CFC) paradigm is the most productive approach for understanding the neurobiology of learning and memory as it allows to follow the evolution of memory traces of a conditioned stimulus and a specific context. The formation of long-term memory involves alterations in synaptic efficacy and neural transmission. It is known that the prefrontal cortex (PFC) exerts top-down control over subcortical structures to regulate behavioural responses. Moreover, cerebellar structures are involved in storing conditioned responses. The purpose of this research was to determine if the response to conditioning and stressful challenge is associated with alterations in synapse-related genes mRNA levels in the PFC, cerebellar vermis (V), and hemispheres (H) of young adult male rats. Four groups of Wistar rats were examined: naïve, CFC, shock only (SO), and exploration (EXPL). The behavioural response was evaluated by measuring the total freezing duration. Real-Time PCR was employed to quantify mRNA levels of some genes involved in synaptic plasticity. The results obtained from this study showed alterations in gene expression in different synapse-related genes after exposure to stressful stimuli and positioning to new environment. In conclusion, conditioning behavioural stimuli change the expression profile of molecules involved in neural transmission.


Assuntos
Vermis Cerebelar , Córtex Pré-Frontal , Ratos , Masculino , Animais , Ratos Wistar , Córtex Pré-Frontal/fisiologia , Sinapses , Medo/fisiologia , Expressão Gênica , RNA Mensageiro/metabolismo
3.
Sensors (Basel) ; 23(10)2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37430896

RESUMO

The aim of this study was to assess the ability of multiscale sample entropy (MSE), refined composite multiscale entropy (RCMSE), and complexity index (CI) to characterize gait complexity through trunk acceleration patterns in subjects with Parkinson's disease (swPD) and healthy subjects, regardless of age or gait speed. The trunk acceleration patterns of 51 swPD and 50 healthy subjects (HS) were acquired using a lumbar-mounted magneto-inertial measurement unit during their walking. MSE, RCMSE, and CI were calculated on 2000 data points, using scale factors (τ) 1-6. Differences between swPD and HS were calculated at each τ, and the area under the receiver operating characteristics, optimal cutoff points, post-test probabilities, and diagnostic odds ratios were calculated. MSE, RCMSE, and CIs showed to differentiate swPD from HS. MSE in the anteroposterior direction at τ4 and τ5, and MSE in the ML direction at τ4 showed to characterize the gait disorders of swPD with the best trade-off between positive and negative posttest probabilities and correlated with the motor disability, pelvic kinematics, and stance phase. Using a time series of 2000 data points, a scale factor of 4 or 5 in the MSE procedure can yield the best trade-off in terms of post-test probabilities when compared to other scale factors for detecting gait variability and complexity in swPD.


Assuntos
Pessoas com Deficiência , Transtornos Motores , Doença de Parkinson , Humanos , Entropia , Fatores de Tempo , Aceleração , Algoritmos
4.
Int J Mol Sci ; 24(4)2023 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-36835568

RESUMO

The intestinal epithelium constitutes a selectively permeable barrier between the internal and external environment that allows the absorption of nutrients, electrolytes, and water, as well as an effective defense against intraluminal bacteria, toxins, and potentially antigenic material. Experimental evidence suggest that intestinal inflammation is critically dependent on an imbalance of homeostasis between the gut microbiota and the mucosal immune system. In this context, mast cells play a crucial role. The intake of specific probiotic strains can prevent the development of gut inflammatory markers and activation of the immune system. Here, the effect of a probiotic formulation containing L. rhamnosus LR 32, B. lactis BL04, and B. longum BB 536 on intestinal epithelial cells and mast cells was investigated. To mimic the natural host compartmentalization, Transwell co-culture models were set up. Co-cultures of intestinal epithelial cells interfaced with the human mast cell line HMC-1.2 in the basolateral chamber were challenged with lipopolysaccharide (LPS), and then treated with probiotics. In the HT29/HMC-1.2 co-culture, the probiotic formulation was able to counteract the LPS-induced release of interleukin 6 from HMC-1.2, and was effective in preserving the epithelial barrier integrity in the HT29/Caco-2/ HMC-1.2 co-culture. The results suggest the potential therapeutic effect of the probiotic formulation.


Assuntos
Mastócitos , Probióticos , Humanos , Técnicas de Cocultura , Células CACO-2 , Lipopolissacarídeos , Células Epiteliais , Mucosa Intestinal , Probióticos/farmacologia
5.
Int J Mol Sci ; 22(13)2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34281186

RESUMO

Parkinson's disease (PD) is the most common neurodegenerative motor disorder characterized by selective degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNpc) of the midbrain, depletion of dopamine (DA), and impaired nigrostriatal pathway. The pathological hallmark of PD includes the aggregation and accumulation α-synuclein (α-SYN). Although the precise mechanisms underlying the pathogenesis of PD are still unknown, the activation of toll-like receptors (TLRs), mainly TLR4 and subsequent neuroinflammatory immune response, seem to play a significant role. Mounting evidence suggests that viral infection can concur with the precipitation of PD or parkinsonism. The recently identified coronavirus named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of ongoing pandemic coronavirus disease 2019 (COVID-19), responsible for 160 million cases that led to the death of more than three million individuals worldwide. Studies have reported that many patients with COVID-19 display several neurological manifestations, including acute cerebrovascular diseases, conscious disturbance, and typical motor and non-motor symptoms accompanying PD. In this review, the neurotropic potential of SARS-CoV-2 and its possible involvement in the pathogenesis of PD are discussed. Specifically, the involvement of the TLR4 signaling pathway in mediating the virus entry, as well as the massive immune and inflammatory response in COVID-19 patients is explored. The binding of SARS-CoV-2 spike (S) protein to TLR4 and the possible interaction between SARS-CoV-2 and α-SYN as contributing factors to neuronal death are also considered.


Assuntos
COVID-19/fisiopatologia , Doença de Parkinson/metabolismo , Doença de Parkinson/virologia , SARS-CoV-2/metabolismo , Receptor 4 Toll-Like/metabolismo , COVID-19/metabolismo , Humanos , Doença de Parkinson/genética , SARS-CoV-2/genética , Transdução de Sinais , Glicoproteína da Espícula de Coronavírus/metabolismo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/fisiologia
6.
Int J Mol Sci ; 22(17)2021 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-34502192

RESUMO

The release of exosomes can lead to cell-cell communication. Nutrients such as vitamin D3 and sphingolipids have important roles in many cellular functions, including proliferation, differentiation, senescence, and cancer. However, the specific composition of sphingolipids in exosomes and their changes induced by vitamin D3 treatment have not been elucidated. Here, we initially observed neutral sphingomyelinase and vitamin D receptors in exosomes released from HN9.10 embryonic hippocampal cells. Using ultrafast liquid chromatography tandem mass spectrometry, we showed that exosomes are rich in sphingomyelin species compared to whole cells. To interrogate the possible functions of vitamin D3, we established the optimal conditions of cell treatment and we analyzed exosome composition. Vitamin D3 was identified as responsible for the vitamin D receptor loss, for the increase in neutral sphingomyelinase content and sphingomyelin changes. As a consequence, the generation of ceramide upon vitamin D3 treatment was evident. Incubation of the cells with neutral sphingomyelinase, or the same concentration of ceramide produced in exosomes was necessary and sufficient to stimulate embryonic hippocampal cell differentiation, as vitamin D3. This is the first time that exosome ceramide is interrogated for mediate the effect of vitamin D3 in inducing cell differentiation.


Assuntos
Diferenciação Celular , Ceramidas/metabolismo , Colecalciferol/farmacologia , Exossomos/metabolismo , Hipocampo/metabolismo , Vitaminas/farmacologia , Células Cultivadas , Exossomos/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Hipocampo/embriologia , Humanos , Receptores de Calcitriol/metabolismo , Esfingomielina Fosfodiesterase/metabolismo
7.
Cerebellum ; 19(4): 583-596, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32410093

RESUMO

The aim of this study was to investigate the time-varying multi-muscle coactivation function (TMCf) in the lower limbs during gait and its relationship with the biomechanical and clinical features of patients with cerebellar ataxia. A total of 23 patients with degenerative cerebellar ataxia (16 with spinocerebellar ataxia, 7 with adult-onset ataxia of unknown etiology) and 23 age-, sex-, and speed-matched controls were investigated. The disease severity was assessed using the Scale for the Assessment and Rating of Ataxia (SARA) in all patients. During walking, simultaneous acquisition of kinematic, kinetic, and electromyography data was performed using a motion analysis system. The coactivation was processed throughout the gait cycle using the TMCf, and the following parameters were measured: synthetic coactivation index, full width at half maximum, and center of activity. Spatiotemporal (walking speed, stance duration, swing duration, first and second double-support durations, step length, step width, stride length, Center of Mass displacement), kinetic (vertical component of GRFs), and energy consumption (total energy consumption and mechanical energy recovered) parameters were also measured. The coactivation variables were compared between patients and controls and were correlated with both clinical and gait variables. A significantly increased global TMCf was found in patients compared with controls. In addition, the patients showed a significant shift of the center of activity toward the initial contact and a significant reduction in energy recovery. All coactivation parameters were negatively correlated with gait speed, whereas the coactivation index and center of activity were positively correlated with both center-of-mass mediolateral displacement values and SARA scores. Our findings suggest that patients use global coactivation as a compensatory mechanism during the earliest and most challenging subphase (loading response) of the gait cycle to reduce the lateral body sway, thus improving gait stability at the expense of effective energy recovery. This information could be helpful in optimizing rehabilitative treatment aimed at improving lower limb muscle control during gait in patients with cerebella ataxia.


Assuntos
Ataxia Cerebelar/complicações , Ataxia Cerebelar/fisiopatologia , Transtornos Neurológicos da Marcha/fisiopatologia , Músculo Esquelético/fisiopatologia , Adulto , Fenômenos Biomecânicos , Feminino , Análise da Marcha , Transtornos Neurológicos da Marcha/etiologia , Humanos , Extremidade Inferior , Masculino , Pessoa de Meia-Idade , Caminhada/fisiologia
8.
Int J Mol Sci ; 21(9)2020 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-32384654

RESUMO

Sphingomyelins (SMs) are a class of relevant bioactive molecules that act as key modulators of different cellular processes, such as growth arrest, exosome formation, and the inflammatory response influenced by many environmental conditions, leading to pyroptosis, a form of programmed cell death due to Caspase-1 involvement. To study liver pyroptosis and hepatic SM metabolism via both lysosomal acid SMase (aSMase) and endoplasmic reticulum/nucleus neutral SMase (nSMase) during the exposure of mice to radiation and to ascertain if this process can be modulated by protective molecules, we used an experimental design (previously used by us) to evaluate the effects of both ionizing radiation and a specific protective molecule (rMnSOD) in the brain in collaboration with the Joint Institute for Nuclear Research, Dubna (Russia). As shown by the Caspase-1 immunostaining of the liver sections, the radiation resulted in the loss of the normal cell structure alongside a progressive and dose-dependent increase of the labelling, treatment, and pretreatment with rMnSOD, which had a significant protective effect on the livers. SM metabolic analyses, performed on aSMase and nSMase gene expression, as well as protein content and activity, proved that rMnSOD was able to significantly reduce radiation-induced damage by playing both a protective role via aSMase and a preventive role via nSMase.


Assuntos
Fígado/metabolismo , Piroptose , Lesões por Radiação/metabolismo , Protetores contra Radiação/farmacologia , Esfingomielina Fosfodiesterase/metabolismo , Esfingomielinas/metabolismo , Animais , Caspase 1/metabolismo , Feminino , Fígado/efeitos dos fármacos , Fígado/efeitos da radiação , Camundongos , Lesões por Radiação/tratamento farmacológico , Protetores contra Radiação/uso terapêutico
9.
Molecules ; 25(12)2020 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-32599866

RESUMO

The fatty acid composition of human breast milk is relevant for the energy, immunity and eicosanoid production in infants. Additionally, the antioxidant properties of foods are essential for human health. Therefore, in the present study we aimed to investigate the relationship between maternal diet and fatty acids composition as well as the antioxidant potential of breast milk from donors to human milk bank of Perugia's hospital, Italy. Results were compared with infant formulas. We observed increased levels of total fatty acids and, in particular, saturated and monounsaturated fatty acids in milk from mothers fed on a vegetable and fruit-rich diet compared with a Mediterranean diet. In the same milk, a reduced antioxidant potential was found. All infant formulas resulted in richer total fatty acid content than human breast milk. Only some formulas were qualitatively similar to breast milk. Of note, the antioxidant potential of the formulas was higher or lower than the human milk with the exception of one sample. The antioxidant potential of four formulas was very high. Dietary supplementation with antioxidants has been shown to have a teratogenic effect and to increase the formation of metastases in adult. There are no data on the effects of excess antioxidants in the infants, but the possibility that they can be harmful cannot be excluded.


Assuntos
Antioxidantes/análise , Ácidos Graxos/análise , Fórmulas Infantis/química , Fenômenos Fisiológicos da Nutrição Materna , Leite Humano/química , Adulto , Dieta Mediterrânea , Ácidos Graxos Ômega-3/análise , Feminino , Humanos , Lactente , Fórmulas Infantis/análise , Fenômenos Fisiológicos da Nutrição do Lactente , Recém-Nascido Prematuro , Gravidez
10.
Am J Med Genet B Neuropsychiatr Genet ; 183(3): 155-163, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31746551

RESUMO

Evidence from family and twin studies points to a genetic contribution to the etiology of eating disorders (EDs), confirmed by the association of several single nucleotide polymorphisms (SNPs) with this group of disorders. Previous reports have suggested that the serotonin receptor (5-HT2AR) and brain-derived neurotrophic factor (BDNF) genes could be both involved in EDs susceptibility. In order to provide further evidence about such association, we focused our attention on two SNPs located in these genes carrying out a genetic association study on a large Italian cohort composed of 556 ED patients and 355 controls (CTRs). Obtained results confirm the presence of an association between 5-HT2AR and BDNF genes and the susceptibility to EDs.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/genética , Transtornos da Alimentação e da Ingestão de Alimentos/genética , Predisposição Genética para Doença , Polimorfismo de Nucleotídeo Único , Receptor 5-HT2A de Serotonina/genética , Adolescente , Adulto , Metilação de DNA , Saúde da Família , Feminino , Estudos de Associação Genética , Genótipo , Humanos , Itália , Masculino , Pessoa de Meia-Idade , Razão de Chances , Adulto Jovem
11.
Artigo em Inglês | MEDLINE | ID: mdl-30928412

RESUMO

Both sphingomyelinase and Toll-Like Receptor 4 (TLR4) are implicated in neurodegenerative diseases. However, the relationship between the two molecules remains unclear. In this study, using WT and TLR4-deficient mice, treated or not with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), we aimed to investigate the relation between TLR4 and neutral sphingomyelinase (nSMase) in the midbrain. We found that the lack of TLR4 caused increase in nSMase protein expression and enzyme activity in the midbrain, as well as a marked delocalization from the cell membranes. This provoked a decrease in sphingomyelin (SM) species and an increase in ceramide levels. We found that exposure of TLR4-deficient mice to MPTP reduces unsaturated SM species by increasing saturated/unsaturated SM ratio. Saturated fatty acid make SM more rigid and could contribute to reducing neural plasticity. In this study we showed that the absence of TLR4 also induced reduction of both heavy neurofilaments and glial fibrillary acidic protein (GFAP) and mice exhibited higher sensitivity to MPTP administration. We speculated about the possible association between nSMase-TLR4 complex and MPTP midbrain damage. Taken together, our findings provide for the first time indications about the role of TLR4 in change of SM metabolism in MPTP neurotoxicity.


Assuntos
Intoxicação por MPTP/metabolismo , Esfingomielina Fosfodiesterase/metabolismo , Receptor 4 Toll-Like/deficiência , Animais , Intoxicação por MPTP/enzimologia , Intoxicação por MPTP/patologia , Mesencéfalo/metabolismo , Mesencéfalo/patologia , Camundongos , Esfingomielinas/metabolismo
12.
Sensors (Basel) ; 19(24)2019 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-31861099

RESUMO

BACKGROUND: Patients suffering from cerebellar ataxia have extremely variable gait kinematic features. We investigated whether and how wearable inertial sensors can describe the gait kinematic features among ataxic patients. METHODS: We enrolled 17 patients and 16 matched control subjects. We acquired data by means of an inertial sensor attached to an ergonomic belt around pelvis, which was connected to a portable computer via Bluetooth. Recordings of all the patients were obtained during overground walking. From the accelerometric data, we obtained the harmonic ratio (HR), i.e., a measure of the acceleration patterns, smoothness and rhythm, and the step length coefficient of variation (CV), which evaluates the variability of the gait cycle. RESULTS: Compared to controls, patients had a lower HR, meaning a less harmonic and rhythmic acceleration pattern of the trunk, and a higher step length CV, indicating a more variable step length. Both HR and step length CV showed a high effect size in distinguishing patients and controls (p < 0.001 and p = 0.011, respectively). A positive correlation was found between the step length CV and both the number of falls (R = 0.672; p = 0.003) and the clinical severity (ICARS: R = 0.494; p = 0.044; SARA: R = 0.680; p = 0.003). CONCLUSION: These findings demonstrate that the use of inertial sensors is effective in evaluating gait and balance impairment among ataxic patients.


Assuntos
Acelerometria/instrumentação , Acidentes por Quedas , Ataxia Cerebelar/diagnóstico , Ataxia Cerebelar/fisiopatologia , Equilíbrio Postural , Estudos de Casos e Controles , Feminino , Marcha , Humanos , Masculino , Pessoa de Meia-Idade , Fatores de Risco
13.
Int J Mol Sci ; 20(15)2019 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-31349547

RESUMO

The skin has many functions, such as providing a barrier against injury and pathogens, protecting from ultraviolet light, and regulating body temperature. Mechanical causes and many different pathologies can lead to skin damage. Therefore, it is important for the skin to be always adaptable and renewable and for cells to undergo proliferation. Here, we demonstrate that 1α, 25-dihydroxyvitamin D3 (VD3) stimulates keratinocyte proliferation, leading to wound closure in a simulation model of injury. Functionally, our results show that VD3 acts by stimulating cyclin D1, a cyclin that promotes the G1/S transition of the cell cycle. The study on the mechanism underlying cyclin D1 expression upon VD3 stimulation clearly demonstrates a key role of neutral sphingomyelinase. The enzyme, whose gene and protein expression is stimulated by VD3, is itself able to induce effects on cyclin D1 and wound healing similar to those obtained with VD3. These results could be very useful in the future to better understand wound mechanisms and improve therapeutic interventions.


Assuntos
Calcitriol/farmacologia , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Esfingomielina Fosfodiesterase/metabolismo , Cicatrização/efeitos dos fármacos , Cicatrização/fisiologia , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Humanos
14.
Int J Mol Sci ; 20(9)2019 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-31086057

RESUMO

Sphingomyelinase (SMase) is responsible for the breakdown of sphingomyelin (SM) with production of ceramide. The absence of acid sphingomyelinase (aSMase) causes abnormal synapse formation in Niemann-Pick type A (NPA) disease. Because high levels of ceramide in the NPA brain were demonstrated, the involvement of other SMases were supposed. In the present study we focused the attention on the neurogenic niches in the hippocampal gyrus dentatus (GD), a brain structure essential for forming cohesive memory. We demonstrated for the first time the increase of (Sex determining region Y)-box 2 (SOX2), and the down-regulation of glial fibrillary acidic protein (GFAP) NPA mice GD. Moreover, we found that the expression of Toll like receptors (TLRs), was increased in NPA mice, particularly TLR2, TLR7, TLR8 and TLR9 members. Although no significant change in neutral sphingomyelinase (nSMase) gene expression was detected in the NPA mice hippocampus of, protein levels were enhanced, probably because of the slower protein degradation rate in this area. Many studies demonstrated that vitamin D receptor (VDR) is expressed in the hippocampus GD. Unexpectedly, we showed that NPA mice exhibited VDR gene and protein expression up-regulation. In summary, our study suggests a relation between hippocampal cell differentiation defect, nSMase and VDR increase in NPA mice.


Assuntos
Neurônios/metabolismo , Doença de Niemann-Pick Tipo A/metabolismo , Receptores de Calcitriol/metabolismo , Esfingomielina Fosfodiesterase/metabolismo , Animais , Giro Denteado/metabolismo , Camundongos Endogâmicos C57BL , Receptor 2 Toll-Like/metabolismo , Receptor 7 Toll-Like/metabolismo , Receptor 8 Toll-Like/metabolismo
15.
Int J Mol Sci ; 20(18)2019 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-31489901

RESUMO

Emerging literature implicates acid sphingomyelinase in tumor sensitivity/resistance to anticancer treatments. Gentamicin is a drug commonly used as an antimicrobial but its serendipity effects have been shown. Even though many evidences on the role of gentamicin in cancer have been reported, its mechanism of action is poorly understood. Here, we explored acid sphingomyelinase as a possible new target of gentamicin in cancer. Since gastric cancer is one of the most common cancers and represents the second cause of death in the world, we performed the study in NCI-N87 gastric cancer cell line. The effect of the drug resulted in the inhibition of cell proliferation, including a reduction of cell number and viability, in the decrease of MIB-1 proliferative index as well as in the upregulation of cyclin-dependent kinase inhibitor 1A and 1B (CDKN1A and CDKN1B), and growth arrest and DNA-damage 45A (GADD45A) genes. The cytotoxicity was apoptotic as shown by FACS analysis. Additionally, gentamicin reduced HER2 protein, indicating a minor tumor aggressiveness. To further define the involvement of sphingomyelin metabolism in the response to the drug, gene and protein expression of acid and neutral sphingomeylinase was analyzed in comparison with phosphatase and tensin homolog deleted on chromosome 10 (PTEN) and vitamin D receptor (VDR), molecules involved in cancer. Gentamicin induced a downregulation of PTEN, VDR, and neutral sphingomyelinase and a strong upregulation of acid sphingomyelinase. Of note, we identified the same upregulation of acid sphingomyelinase upon gentamicin treatment in other cancer cells and not in normal cells. These findings provide new insights into acid sphingomyelinase as therapeutic target, reinforcing studies on the potential role of gentamicin in anticancer therapy.


Assuntos
Inibidores Enzimáticos/farmacologia , Gentamicinas/farmacologia , Esfingomielina Fosfodiesterase/antagonistas & inibidores , Neoplasias Gástricas/enzimologia , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Expressão Gênica , Humanos , Metabolismo dos Lipídeos/efeitos dos fármacos , Esfingomielina Fosfodiesterase/genética , Esfingomielina Fosfodiesterase/metabolismo , Esfingomielinas/metabolismo , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia
16.
Int J Mol Sci ; 20(21)2019 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-31683613

RESUMO

Studies on the relationship between reactive oxygen species (ROS)/manganese superoxide dismutase (MnSOD) and sphingomyelinase (SMase) are controversial. It has been demonstrated that SMase increases the intracellular ROS level and induces gene expression for MnSOD protein. On the other hand, some authors showed that ROS modulate the activation of SMase. The human recombinant manganese superoxide dismutase (rMnSOD) exerting a radioprotective effect on normal cells, qualifies as a possible pharmaceutical tool to prevent and/or cure damages derived from accidental exposure to ionizing radiation. This study aimed to identify neutral SMase (nSMase) as novel molecule connecting rMnSOD to its radiation protective effects. We used a new, and to this date, unique, experimental model to assess the effect of both radiation and rMnSOD in the brain of mice, within a collaborative project among Italian research groups and the Joint Institute for Nuclear Research, Dubna (Russia). Mice were exposed to a set of minor γ radiation and neutrons and a spectrum of neutrons, simulating the radiation levels to which cosmonauts will be exposed during deep-space, long-term missions. Groups of mice were treated or not-treated (controls) with daily subcutaneous injections of rMnSOD during a period of 10 days. An additional group of mice was also pretreated with rMnSOD for three days before irradiation, as a model for preventive measures. We demonstrate that rMnSOD significantly protects the midbrain cells from radiation-induced damage, inducing a strong upregulation of nSMase gene and protein expression. Pretreatment with rMnSOD before irradiation protects the brain with a value of very high nSMase activity, indicating that high levels of activity might be sufficient to exert the rMnSOD preventive role. In conclusion, the protective effect of rMnSOD from radiation-induced brain damage may require nSMase enzyme.


Assuntos
Encéfalo/efeitos dos fármacos , Proteínas Recombinantes/farmacologia , Esfingomielina Fosfodiesterase/metabolismo , Superóxido Dismutase/farmacologia , Animais , Encéfalo/patologia , Encéfalo/efeitos da radiação , Feminino , Expressão Gênica/efeitos dos fármacos , Camundongos Endogâmicos ICR , Radiação Ionizante , Protetores contra Radiação/administração & dosagem , Protetores contra Radiação/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Proteínas Recombinantes/administração & dosagem , Esfingomielina Fosfodiesterase/genética , Superóxido Dismutase/administração & dosagem , Superóxido Dismutase/genética
17.
Molecules ; 24(24)2019 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-31835609

RESUMO

Neuroinflammation is a feature of many classic neurodegenerative diseases. In the healthy brain, microglia cells are distributed throughout the brain and are constantly surveilling the central nervous system (CNS). In response to CNS injury, microglia quickly react by secreting a wide array of apoptotic molecules. Virgin olive oil (VOO) is universally recognized as a symbol of the Mediterranean diet. In the current study, using lipopolysaccharide (LPS)-stimulated BV2 microglia, the anti-inflammatory effects of VOO phenolic extracts from Moraiolo cultivar (MVOO-PE) were investigated. The results showed that low concentration of MVOO-PE prevented microglia cell death and attenuated the LPS-induced activation of toll-like receptor 4 (TLR4)/NOD-like receptor pyrin domain-containing-3 (NLRP3) signaling cascade. The levels of TLR4 and NF-kB were diminished, as well as NLRP3 inflammasome and interleukin-1ß (IL-1ß) production. Cyclooxygenase-2 (COX-2) isoenzyme and ionized calcium binding adaptor molecule 1 (Iba-1) inflammatory mediator were also reduced. By modulating the TLR4/NLRP3 axis, MVOO-PE pretreatment was able to significantly down-regulate the mRNA expression of inflammatory mediators and suppress the cytokine secretion. Finally, we showed protective effect of MVOO-PE in a transwell neuron-microglia co-culture system. In conclusion, these results suggest that MVOO-PE could exerts anti-inflammatory activity on brain cells and become a promising candidate for preventing several neuroinflammatory diseases.


Assuntos
Anti-Inflamatórios/farmacologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Azeite de Oliva/farmacologia , Fenóis/farmacologia , Transdução de Sinais/efeitos dos fármacos , Receptor 4 Toll-Like/metabolismo , Anti-Inflamatórios/química , Citocinas/metabolismo , Humanos , Microglia/efeitos dos fármacos , Microglia/metabolismo , Modelos Biológicos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Azeite de Oliva/química , Fenóis/química
18.
Int J Mol Sci ; 19(5)2018 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-29772816

RESUMO

Alpha-mannosidosis (α-mannosidosis) is a rare lysosomal storage disorder with an autosomal recessive inheritance caused by mutations in the gene encoding for the lysosomal α-d-mannosidase. So far, 155 variants from 191 patients have been identified and in part characterized at the biochemical level. Similarly to other lysosomal storage diseases, there is no relationship between genotype and phenotype in alpha-mannosidosis. Enzyme replacement therapy is at the moment the most effective therapy for lysosomal storage disease, including alpha-mannosidosis. In this review, the genetic of alpha-mannosidosis has been described together with the results so far obtained by two different therapeutic strategies: bone marrow transplantation and enzyme replacement therapy. The primary indication to offer hematopoietic stem cell transplantation in patients affected by alpha-mannosidosis is preservation of neurocognitive function and prevention of early death. The results obtained from a Phase I⁻II study and a Phase III study provide evidence of the positive clinical effect of the recombinant enzyme on patients with alpha-mannosidosis.


Assuntos
alfa-Manosidose/etiologia , alfa-Manosidose/metabolismo , Animais , Transplante de Medula Óssea , Terapia Combinada , Ativação Enzimática , Terapia de Reposição de Enzimas , Estudos de Associação Genética , Humanos , Mutação , alfa-Manosidase/genética , alfa-Manosidase/metabolismo , alfa-Manosidase/uso terapêutico , alfa-Manosidose/terapia
19.
Int J Mol Sci ; 19(11)2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30388783

RESUMO

Daunorubicin is an anticancer drug, and cholesterol is involved in cancer progression, but their relationship has not been defined. In this study, we developed a novel experimental model that utilizes daunorubicin, cholesterol, and daunorubicin plus cholesterol in the same cells (H35) to search for the role of nuclear lipid microdomains, rich in cholesterol and sphingomyelin, in drug resistance. We find that the daunorubicin induces perturbation of nuclear lipid microdomains, localized in the inner nuclear membrane, where active chromatin is anchored. As changes of sphingomyelin species in nuclear lipid microdomains depend on neutral sphingomyelinase activity, we extended our studies to investigate whether the enzyme is modulated by daunorubicin. Indeed the drug stimulated the sphingomyelinase activity that induced reduction of saturated long chain fatty acid sphingomyelin species in nuclear lipid microdomains. Incubation of untreated-drug cells with high levels of cholesterol resulted in the inhibition of sphingomyelinase activity with increased saturated fatty acid sphingomyelin species. In daunodubicin-treated cells, incubation with cholesterol reversed the action of the drug by acting via neutral sphingomyelinase. In conclusion, we suggest that cholesterol and sphingomyelin-forming nuclear lipid microdomains are involved in the drug resistance.


Assuntos
Carcinoma Hepatocelular/patologia , Núcleo Celular/metabolismo , Daunorrubicina/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Neoplasias Hepáticas/patologia , Microdomínios da Membrana/metabolismo , Linhagem Celular Tumoral , Núcleo Celular/efeitos dos fármacos , Colesterol/metabolismo , Regulação para Baixo/efeitos dos fármacos , Proteínas da Matriz do Complexo de Golgi/metabolismo , Humanos , Lamina Tipo B/metabolismo , Microdomínios da Membrana/efeitos dos fármacos , Fator de Transcrição STAT3/metabolismo , Esfingomielina Fosfodiesterase/metabolismo , Esfingomielinas/metabolismo
20.
Cerebellum ; 16(1): 26-33, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-26811155

RESUMO

This study aims to evaluate trunk local stability in a group of patients with degenerative primary cerebellar ataxia and to correlate it with spatio-temporal parameters, clinical variables, and history of falls. Sixteen patients affected by degenerative cerebellar ataxia and 16 gender- and age-matched healthy adults were studied by means of an inertial sensor to measure trunk kinematics and spatio-temporal parameters during over-ground walking. Trunk local dynamic stability was quantified by the maximum Lyapunov exponent with short data series of the acceleration data. According to this index, low values indicate more stable trunk dynamics, while high values denote less stable trunk dynamics. Disease severity was assessed by means of International Cooperative Ataxia Rating Scale (ICARS) according to which higher values correspond to more severe disease, while lower values correspond to less severe disease.Patients displayed a higher short-term maximum Lyapunov exponent than controls in all three spatial planes, which was correlated with the age, onset of the disease, and history of falls. Furthermore, the maximum Lyapunov exponent was negatively correlated with ICARS balance, ICARS posture, and ICARS total scores.These findings indicate that trunk local stability during gait is lower in patients with cerebellar degenerative ataxia than that in healthy controls and that this may increase the risk of falls. Local dynamic stability of the trunk seems to be an important aspect in patients with ataxia and could be a useful tool in the evaluation of rehabilitative and pharmacological treatment outcomes.


Assuntos
Ataxia Cerebelar/fisiopatologia , Doenças Neurodegenerativas/fisiopatologia , Equilíbrio Postural , Tronco , Caminhada , Acidentes por Quedas , Adulto , Idoso , Envelhecimento/fisiologia , Fenômenos Biomecânicos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Equilíbrio Postural/fisiologia , Tronco/fisiopatologia , Caminhada/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA