Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; 88(9): e0027722, 2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35442082

RESUMO

Generic Escherichia coli is commonly used as an indicator of fecal contamination to assess water quality and human health risk. Where measured E. coli exceedances occur, the presence of other pathogenic microorganisms, such as Shiga toxin-producing E. coli (STEC), is assumed, but confirmatory data are lacking. Putative E. coli isolates (n = 709) were isolated from water, sediment, soil, periphyton, and feces samples (n = 189) from five sites representing native forest and agricultural environments. Ten E. coli isolates (1.41%) were stx2 positive, 19 (2.7%) were eae positive, and stx1-positive isolates were absent. At the sample level, stx2-positive E. coli (5 of 189, 2.6%) and eae-positive isolates (16 of 189, 8.5%) were rare. Using real-time PCR, these STEC-associated virulence factors were determined to be more prevalent in sample enrichments (stx1, 23.9%; stx2, 31.4%; eae, 53.7%) and positively correlated with generic E. coli isolate numbers (P < 0.05) determined using culture-based methods. Whole-genome sequencing (WGS) was undertaken on a subset of 238 isolates with assemblies representing seven E. coli phylogroups (A, B1, B2, C, D, E, and F), 22 Escherichia marmotae isolates, and 1 Escherichia ruysiae isolate. Virulence factors, including those from extraintestinal pathogenic E. coli, were extremely diverse in isolates from the different locations and were more common in phylogroup B2. Analysis of the virulome from WGS data permitted the identification of gene repertoires that may be involved in environmental fitness and broadly align with phylogroup. Although recovery of STEC isolates was low, our molecular data indicate that they are likely to be widely present in environmental samples containing diverse E. coli phylogroups. IMPORTANCE This study takes a systematic sampling approach to assess the public health risk of Escherichia coli recovered from freshwater sites within forest and farmland. The New Zealand landscape is dominated by livestock farming, and previous work has demonstrated that "recreational exposure to water" is a risk factor for human infection by Shiga toxin-producing Escherichia coli (STEC). Though STEC isolates were rarely isolated from water samples, STEC-associated virulence factors were identified more commonly from water sample culture enrichments and were associated with increased generic E. coli concentrations. Whole-genome sequencing data from both E. coli and newly described Escherichia spp. demonstrated the presence of virulence factors from E. coli pathotypes, including extraintestinal pathogenic E. coli. This has significance for understanding and interpreting the potential health risk from E. coli where water quality is poor and suggests a role of virulence factors in survival and persistence of E. coli and Escherichia spp.


Assuntos
Infecções por Escherichia coli , Proteínas de Escherichia coli , Escherichia coli Shiga Toxigênica , Proteínas de Escherichia coli/genética , Fezes , Humanos , Nova Zelândia , Fatores de Virulência/genética
2.
Appl Environ Microbiol ; 87(11)2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33771782

RESUMO

Cattle are asymptomatic carriers of Shiga toxin-producing Escherichiacoli (STEC) strains that can cause serious illness or death in humans. In New Zealand, contact with cattle feces and living near cattle populations are known risk factors for human STEC infection. Contamination of fresh meat with STEC strains also leads to the potential for rejection of consignments by importing countries. We used a combination of PCR/matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF) and whole-genome sequencing (WGS) to evaluate the presence and transmission of STEC on farms and in processing plants to better understand the potential pathways for human exposure and thus mitigate risk. Animal and environmental samples (n = 2,580) were collected from six farms and three meat processing plants in New Zealand during multiple sampling sessions in spring of 2015 and 2016. PCR/MALDI-TOF analysis revealed that 6.2% were positive for "Top 7" STEC. Top 7 STEC strains were identified in all sample sources (n = 17) tested. A marked increase in Top 7 STEC prevalence was observed between calf hides on farm (6.3% prevalence) and calf hides at processing plants (25.1% prevalence). Whole-genome sequencing was performed on Top 7 STEC bacterial isolates (n = 40). Analysis of STEC O26 (n = 25 isolates) revealed relatively low genetic diversity on individual farms, consistent with the presence of a resident strain disseminated within the farm environment. Public health efforts should focus on minimizing human contact with fecal material on farms and during handling, transport, and slaughter of calves. Meat processing plants should focus on minimizing cross-contamination between the hides of calves in a cohort during transport, lairage, and slaughter.IMPORTANCE Cattle are asymptomatic carriers of Shiga toxin-producing E. coli (STEC) strains, which can cause serious illness or death in humans. Contact with cattle feces and living near cattle are known risk factors for human STEC infection. This study evaluated STEC carriage in young calves and the farm environment with an in-depth evaluation of six farms and three meat processing plants over 2 years. An advanced molecular detection method and whole-genome sequencing were used to provide a detailed evaluation of the transmission of STEC both within and between farms. The study revealed widespread STEC contamination within the farm environment, but no evidence of recent spread between farms. Contamination of young dairy calf hides increased following transport and holding at meat processing plants. The elimination of STEC in farm environments may be very difficult given the multiple transmission routes; interventions should be targeted at decreasing fecal contamination of calf hides during transport, lairage, and processing.


Assuntos
Doenças dos Bovinos/transmissão , Infecções por Escherichia coli/veterinária , Escherichia coli Shiga Toxigênica/fisiologia , Matadouros , Criação de Animais Domésticos , Animais , Bovinos , Doenças dos Bovinos/microbiologia , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/transmissão , Feminino , Nova Zelândia , Reação em Cadeia da Polimerase/veterinária , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/veterinária , Sequenciamento Completo do Genoma/veterinária
3.
Emerg Infect Dis ; 25(3): 489-500, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30789138

RESUMO

Shiga toxin-producing Escherichia coli serogroup O26 is an important public health pathogen. Phylogenetic bacterial lineages in a country can be associated with the level and timing of international imports of live cattle, the main reservoir. We sequenced the genomes of 152 E. coli O26 isolates from New Zealand and compared them with 252 E. coli O26 genomes from 14 other countries. Gene variation among isolates from humans, animals, and food was strongly associated with country of origin and stx toxin profile but not isolation source. Time of origin estimates indicate serogroup O26 sequence type 21 was introduced at least 3 times into New Zealand from the 1920s to the 1980s, whereas nonvirulent O26 sequence type 29 strains were introduced during the early 2000s. New Zealand's remarkably fewer introductions of Shiga toxin-producing Escherichia coli O26 compared with other countries (such as Japan) might be related to patterns of trade in live cattle.


Assuntos
Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/microbiologia , Variação Genética , Genoma Bacteriano , Genômica , Escherichia coli Shiga Toxigênica/classificação , Escherichia coli Shiga Toxigênica/genética , Biologia Computacional/métodos , Bases de Dados Genéticas , Farmacorresistência Bacteriana , Infecções por Escherichia coli/transmissão , Evolução Molecular , Genômica/métodos , Saúde Global , Humanos , Anotação de Sequência Molecular , Nova Zelândia/epidemiologia , Filogenia , Sorogrupo , Escherichia coli Shiga Toxigênica/efeitos dos fármacos , Escherichia coli Shiga Toxigênica/isolamento & purificação
4.
Foodborne Pathog Dis ; 16(1): 5-22, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30418042

RESUMO

Antimicrobial resistance (AMR) is a global issue for both human and animal health. Infections caused by antimicrobial-resistant bacteria present treatment option challenges and are often associated with heightened severity of infection. Antimicrobial use (AMU) in human and animal health is a main driver for the development of antimicrobial-resistant bacteria. Increasing levels of AMU and the development and spread of AMR in food-producing animals, especially in poultry and swine production, has been identified as a food safety risk, but dairy production systems have been less studied. A number of farm management practices may impact on animal disease and as a result can influence the use of antimicrobials and subsequently AMR prevalence. However, this relationship is multifactorial and complex. Several AMR transmission pathways between dairy cattle, the environment, and humans have been proposed, including contact with manure-contaminated pastures, direct contact, or through the food chain from contaminated animal-derived products. The World Health Organization has defined a priority list for selected bacterial pathogens of concern to human health according to 10 criteria relating to health and AMR. This list includes human pathogens such as the extended-spectrum beta-lactamase-producing Enterobacteriaceae (ESBL-E), which can be associated with dairy cattle, their environment, as well as animal-derived food products. ESBL-E represent a potential risk to human and animal health and an emerging food safety concern. This review addresses two areas; first, the current understanding of the role of dairy farming in the prevalence and spread of AMR is considered, highlighting research gaps using ESBL-E as an exemplar; and second, a New Zealand perspective is taken to examine how farm management practices may contribute to on-farm AMU and AMR in dairy cattle.


Assuntos
Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos , Enterobacteriaceae/enzimologia , Inocuidade dos Alimentos , Saúde Pública , beta-Lactamases/metabolismo , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bovinos , Indústria de Laticínios , Enterobacteriaceae/genética , Fazendas , Humanos , Nova Zelândia , Aves Domésticas , Suínos , Organização Mundial da Saúde , beta-Lactamases/genética
5.
Appl Environ Microbiol ; 84(14)2018 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-29752274

RESUMO

New Zealand has a relatively high incidence of human cases of Shiga toxin-producing Escherichia coli (STEC), with 8.9 STEC cases per 100,000 people reported in 2016. Previous research showed living near cattle and contact with cattle feces as significant risk factors for STEC infections in humans in New Zealand, but infection was not linked to food-associated factors. During the 2014 spring calving season, a random, stratified, cross-sectional study of dairy farms (n = 102) in six regions across New Zealand assessed the prevalence of the "Top 7" STEC bacteria (serogroups O157, O26, O45, O103, O111, O121, and O145) in young calves (n = 1,508), using a culture-independent diagnostic test (PCR/MALDI-TOF). Twenty percent (306/1,508) of calves on 75% (76/102) of dairy farms were positive for at least one of the "Top 7" STEC bacteria. STEC carriage by calves was associated with environmental factors, increased calf age, region, and increased number of calves in a shared calf pen. The intraclass correlation coefficient (ρ) indicated strong clustering of "Top 7" STEC-positive calves for O157, O26, and O45 serogroups within the same pens and farms, indicating that if one calf was positive, others in the same environment were likely to be positive as well. This finding was further evaluated with whole-genome sequencing, which indicated that a single E. coli O26 clonal strain could be found in calves in the same pen or farm, but different strains existed on different farms. This study provides evidence that would be useful for designing on-farm interventions to reduce direct and indirect human exposure to STEC bacteria.IMPORTANCE Cattle are asymptomatic carriers of Shiga toxin-producing E. coli (STEC) bacteria that can cause bloody diarrhea and kidney failure in humans if ingested. New Zealand has relatively high numbers of STEC cases, and contact with cattle feces and living near cattle are risk factors for human infection. This study assessed the national prevalence of STEC in young dairy cattle by randomly selecting 102 farms throughout New Zealand. The study used a molecular laboratory method that has relatively high sensitivity and specificity compared to traditional methods. "Top 7" STEC was found in 20% of calves on 75% of the farms studied, indicating widespread prevalence across the country. By examining the risk factors associated with calf carriage, potential interventions that could decrease the prevalence of "Top 7" STEC bacteria at the farm level were identified, which could benefit both public health and food safety.


Assuntos
Infecções por Escherichia coli/microbiologia , Fazendas , Epidemiologia Molecular , Escherichia coli Shiga Toxigênica/genética , Sequenciamento Completo do Genoma/métodos , Animais , Bovinos , Estudos Transversais , Infecções por Escherichia coli/epidemiologia , Fezes/microbiologia , Humanos , Nova Zelândia/epidemiologia , Prevalência , Análise de Regressão , Fatores de Risco , Sorogrupo , Escherichia coli Shiga Toxigênica/isolamento & purificação , Virulência/genética
6.
Emerg Infect Dis ; 20(12): 1980-9, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25568924

RESUMO

Shiga toxin-producing Escherichia coli (STEC)O157:H7 is a zoonotic pathogen of public health concern worldwide. To compare the local and large-scale geographic distributions of genotypes of STEC O157:H7 isolates obtained from various bovine and human sources during 2008­2011, we used pulsed-field gel electrophoresis and Shiga toxin­encoding bacteriophage insertion (SBI) typing. Using multivariate methods, we compared isolates from the North and South Islands of New Zealand with isolates from Australia and the United States. The STEC O157:H7 population structure differed substantially between the 2 islands and showed evidence of finer scale spatial structuring, which is consistent with highly localized transmission rather than disseminated foodborne outbreaks. The distribution of SBI types differed markedly among isolates from New Zealand, Australia, and the United States. Our findings also provide evidence for the historic introduction into New Zealand of a subset of globally circulating STEC O157:H7 strains that have continued to evolve and be transmitted locally between cattle and humans.


Assuntos
Doenças dos Bovinos/microbiologia , Infecções por Escherichia coli/microbiologia , Escherichia coli O157/genética , Genótipo , Animais , Austrália/epidemiologia , Bovinos , Doenças dos Bovinos/epidemiologia , Doenças dos Bovinos/transmissão , Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/transmissão , Escherichia coli O157/classificação , Variação Genética , Humanos , Tipagem de Sequências Multilocus , Nova Zelândia/epidemiologia , Filogenia , Filogeografia , Estados Unidos/epidemiologia , Virulência/genética , Fatores de Virulência/genética
7.
PLoS One ; 19(1): e0296290, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38180967

RESUMO

Antimicrobial resistance is a global threat to human and animal health, with the misuse and overuse of antimicrobials suggested as the main drivers of resistance. Antimicrobial therapy can alter the bacterial community composition and the faecal resistome in cattle. Little is known about the impact of systemic antimicrobial therapy on the faecal microbiome in dairy cows in the presence of disease. Therefore, this study aimed to assess the impact of systemic antimicrobial therapy on the faecal microbiome in dairy cows in the pastoral farm environment, by analysing faecal samples from cattle impacted by several different clinically-defined conditions and corresponding antimicrobial treatments. Analysis at the individual animal level showed a decrease in bacterial diversity and richness during antimicrobial treatment but, in many cases, the microbiome diversity recovered post-treatment when the cow re-entered the milking herd. Perturbations in the microbiome composition and the ability of the microbiome to recover were specific at the individual animal level, highlighting that the animal is the main driver of variation. Other factors such as disease severity, the type and duration of antimicrobial treatment and changes in environmental factors may also impact the bovine faecal microbiome. AmpC-producing Escherichia coli were isolated from faeces collected during and post-treatment with ceftiofur from one cow while no third-generation cephalosporin resistant E. coli were isolated from the untreated cow samples. This isolation of genetically similar plasmid-mediated AmpC-producing E. coli has implications for the development and dissemination of antibiotic resistant bacteria and supports the reduction in the use of critically important antimicrobials.


Assuntos
Anti-Infecciosos , Microbiota , Feminino , Humanos , Bovinos , Animais , Escherichia coli , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Fezes
8.
Microbiol Resour Announc ; 13(3): e0100723, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38376223

RESUMO

Escherichia coli is often used as a fecal indicator bacterium for water quality monitoring. We report the draft genome sequences of 500 Escherichia isolates including newly described Escherichia species, namely Escherichia marmotae, Escherichia ruysiae, and Escherichia whittamii, obtained from diverse environmental sources to assist with improved public health risk assessments.

9.
J Microbiol Methods ; 220: 106909, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38432551

RESUMO

Escherichia coli are widely used by water quality managers as Fecal Indicator Bacteria, but current quantification methods do not differentiate them from benign, environmental Escherichia species such as E. marmotae (formerly named cryptic clade V) or E. ruysiae (cryptic clades III and IV). Reliable and specific techniques for their identification are required to avoid confounding microbial water quality assessments. To address this, a multiplex droplet digital PCR (ddPCR) assay targeting lipB (E. coli and E. ruysiae) and bglC (E. marmotae) was designed. The ddPCR performance was assessed using in silico analysis; genomic DNA from 40 local, international, and reference strains of target and non-target coliforms; and spiked water samples in a range relevant to water quality managers (1 to 1000 cells/100 mL). Results were compared to an analogous quantitative PCR (qPCR) and the Colilert method. Both PCR assays showed excellent sensitivity with a limit of detection of 0.05 pg/µL and 0.005 pg/µl for ddPCR and qPCR respectively, and of quantification of 0.5 pg/µL of genomic DNA. The ddPCR allowed differentiation and quantification of three Escherichia species per run by amplitude multiplexing and showed a high concordance with concentrations measured by Colilert once proportional bias was accounted for. In silico specificity testing underlined the possibility to further detect and distinguish Escherichia cryptic clade VI. Finally, the applicability of the ddPCR was successfully tested on environmental water samples where E. marmotae and E. ruysiae potentially confound E. coli counts based on the Most Probable Number method, highlighting the utility of this novel ddPCR as an efficient and rapid discriminatory test to improve water quality assessments.


Assuntos
Bactérias , Escherichia coli , Reação em Cadeia da Polimerase em Tempo Real/métodos , Qualidade da Água , DNA
10.
Environ Microbiol Rep ; 16(4): e13319, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39096033

RESUMO

Freshwater samples (n = 199) were obtained from 41 sites with contrasting land-uses (avian, low impact, dairy, urban, sheep and beef, and mixed sheep, beef and dairy) and the E. coli phylotype of 3980 isolates (20 per water sample enrichment) was determined. Eight phylotypes were identified with B1 (48.04%), B2 (14.87%) and A (14.79%) the most abundant. Escherichia marmotae (n = 22), and Escherichia ruysiae (n = 1), were rare (0.68%) suggesting that these environmental strains are unlikely to confound water quality assessments. Phylotypes A and B1 were overrepresented in dairy and urban sites (p < 0.0001), whilst B2 were overrepresented in low impact sites (p < 0.0001). Pathogens ((Salmonella, Campylobacter, Cryptosporidium or Giardia) and the presence of diarrhoeagenic E. coli-associated genes (stx and eae) were detected in 89.9% (179/199) samples, including 80.5% (33/41) of samples with putative non-recent faecal inputs. Quantitative PCR to detect microbial source tracking targets from human, ruminant and avian contamination were concordant with land-use type and E. coli phylotype abundance. This study demonstrated that a potential recreational health risk remains where pathogens occurred in water samples with low E. coli concentration, potential non-recent faecal sources, low impact sites and where human, ruminant and avian faecal sources were absent.


Assuntos
Escherichia coli , Água Doce , Saúde Pública , Qualidade da Água , Nova Zelândia , Escherichia coli/genética , Escherichia coli/isolamento & purificação , Escherichia coli/classificação , Água Doce/microbiologia , Animais , Humanos , Microbiologia da Água , Filogenia , Fezes/microbiologia , Cryptosporidium/genética , Cryptosporidium/isolamento & purificação , Cryptosporidium/classificação , Giardia/genética , Giardia/isolamento & purificação , Giardia/classificação
11.
BMC Infect Dis ; 13: 450, 2013 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-24079470

RESUMO

BACKGROUND: Shiga toxin-producing Escherichia coli (STEC) O157:H7 and related non-O157 STEC strains are enteric pathogens of public health concern worldwide, causing life-threatening diseases. Cattle are considered the principal hosts and have been shown to be a source of infection for both foodborne and environmental outbreaks in humans. The aims of this study were to investigate risk factors associated with sporadic STEC infections in humans in New Zealand and to provide epidemiological information about the source and exposure pathways. METHODS: During a national prospective case-control study from July 2011 to July 2012, any confirmed case of STEC infection notified to regional public health units, together with a random selection of controls intended to be representative of the national demography, were interviewed for risk factor evaluation. Isolates from each case were genotyped using pulsed-field gel electrophoresis (PFGE) and Shiga toxin-encoding bacteriophage insertion (SBI) typing. RESULTS: Questionnaire data from 113 eligible cases and 506 controls were analysed using multivariate logistic regression. Statistically significant animal and environmental risk factors for human STEC infections were identified, notably 'Cattle livestock present in meshblock' (the smallest geographical unit) (odds ratio 1.89, 95% CI 1.04-3.42), 'Contact with animal manure' (OR 2.09, 95% CI 1.12-3.90), and 'Contact with recreational waters' (OR 2.95, 95% CI 1.30-6.70). No food-associated risk factors were identified as sources of STEC infection. E. coli O157:H7 caused 100/113 (88.5%) of clinical STEC infections in this study, and 97/100 isolates were available for molecular analysis. PFGE profiles of isolates revealed three distinctive clusters of genotypes, and these were strongly correlated with SBI type. The variable 'Island of residence' (North or South Island of New Zealand) was significantly associated with PFGE genotype (p = 0.012). CONCLUSIONS: Our findings implicate environmental and animal contact, but not food, as significant exposure pathways for sporadic STEC infections in humans in New Zealand. Risk factors associated with beef and dairy cattle suggest that ruminants are the most important sources of STEC infection. Notably, outbreaks of STEC infections are rare in New Zealand and this further suggests that food is not a significant exposure pathway.


Assuntos
Infecções por Escherichia coli/epidemiologia , Escherichia coli Shiga Toxigênica/genética , Escherichia coli Shiga Toxigênica/isolamento & purificação , Adolescente , Adulto , Idoso , Animais , Estudos de Casos e Controles , Bovinos , Criança , Pré-Escolar , Infecções por Escherichia coli/microbiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Nova Zelândia/epidemiologia , Filogenia , Estudos Prospectivos , Escherichia coli Shiga Toxigênica/classificação , Adulto Jovem , Zoonoses/epidemiologia , Zoonoses/microbiologia
12.
J Med Microbiol ; 72(8)2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37578342

RESUMO

Introduction. Dairy calves, particularly pre-weaned calves have been identified as a common source of multidrug resistant (MDR) Escherichia coli.Gap statement. E. coli strains isolated from dairy calves and the location of their resistance genes (plasmid or chromosomal) have not been well characterised.Aim. To characterise the phenotypic and genotypic features as well as the population structure of antimicrobial-resistant E. coli isolated from calves located on dairy farms that feed waste-milk to their replacement calves.Methodology. Recto-anal swab enrichments from 40 dairy calves (≤ 14 days old) located on four dairy farms were examined for tetracycline, streptomycin, ciprofloxacin, and third-generation cephalosporin resistant E. coli. Whole genome sequencing was performed using both short- and long-read technologies on selected antimicrobial resistant E. coli.Results. Fifty-eight percent (23/40) of calves harboured antimicrobial resistant E. coli: 43 % (17/40) harboured tetracycline resistant, and 23 % (9/40) harboured chromosomal mediated AmpC producing E. coli. Whole genome sequencing of 27 isolates revealed five sequence types, with ST88 being the dominant ST (17/27, 63 % of the sequenced isolates) followed by ST1308 (3/27, 11 %), along with the extraintestinal pathogenic E. coli lineages ST69 (3/27, 11 %), ST10 (2/27, 7 %), and ST58 (2/27, 7 %). Additionally, 16 isolates were MDR, harbouring additional resistance genes that were not tested phenotypically. Oxford Nanopore long-read sequencing technologies enabled the location of multiple resistant gene cassettes in IncF plasmids to be determined.Conclusion. Our study identified a high incidence of tetracycline and streptomycin-resistant E. coli in dairy calves, and highlighted the presence of multidrug-resistant strains, emphasising the need for further investigation into potential associations with farm management practices.


Assuntos
Anti-Infecciosos , Infecções por Escherichia coli , Animais , Bovinos , Escherichia coli/genética , Antibacterianos/farmacologia , Infecções por Escherichia coli/veterinária , Infecções por Escherichia coli/epidemiologia , Tetraciclina , Estreptomicina
13.
J Nutr ; 142(11): 1921-8, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22990463

RESUMO

The gastrointestinal microbiota plays an important role in maintaining host health by preventing the colonization of pathogens, fermenting dietary compounds, and maintaining normal mucosal immunity. Particularly in early life, the composition of the microbiota profoundly influences the development and maturation of the gastrointestinal tract (GIT) mucosa, which may affect health in later life. Therefore, strategies to manipulate the microbiota during infancy may prevent the development of some diseases later in adult life. Earlier research suggested that term fetuses are sterile and that the initial bacterial colonization of the newborn GIT occurs only after the baby transits through the birth canal. However, recent studies have demonstrated that the colonization and/or contact of the fetus with the maternal GIT microbiota may start in utero. After vaginal birth, the colonization of the neonate GIT continues through contact with maternal feces and vaginal bacteria, leading to a relatively simple microbial community that is influenced by feeding type (breast vs. formula feeding). Maternal GIT microbiota, vaginal microbiota, and breast milk composition are influenced by maternal diet. Alterations of the maternal GIT microbiota composition via supplementation with probiotics and prebiotics have been shown; however, transfer of these benefits to the offspring remains to be demonstrated. This review focuses on the influence of maternal GIT microbiota during the pre- and postpartum periods on the colonization of the infant GIT. In particular, it examines the manipulation of the maternal GIT microbiota composition through the use of probiotics and/or prebiotics and subsequent consequences for the health of the offspring.


Assuntos
Trato Gastrointestinal/microbiologia , Fenômenos Fisiológicos da Nutrição Materna , Adulto , Feminino , Humanos , Recém-Nascido , Prebióticos , Gravidez , Fenômenos Fisiológicos da Nutrição Pré-Natal , Probióticos , Vagina/microbiologia
14.
Microb Genom ; 8(10)2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36200854

RESUMO

Extended-spectrum beta lactamase (ESBL)-producing Escherichia coli are often isolated from humans with urinary tract infections and may display a multidrug-resistant phenotype. These pathogens represent a target for a One Health surveillance approach to investigate transmission between humans, animals and the environment. This study examines the multidrug-resistant phenotype and whole genome sequence data of four ESBL-producing E. coli isolated from freshwater in New Zealand. All four isolates were obtained from a catchment with a mixed urban and pastoral farming land-use. Three isolates were sequence type (ST) 131 (CTX-M-27-positive) and the other ST69 (CTX-M-15-positive); a phylogenetic comparison with other locally isolated strains demonstrated a close relationship with New Zealand clinical isolates. Genes associated with resistance to antifolates, tetracyclines, aminoglycosides and macrolides were identified in all four isolates, together with fluoroquinolone resistance in two isolates. The ST69 isolate harboured the bla CTX-M-15 gene on a IncHI2A plasmid, and two of the three ST131 isolates harboured the bla CTX-M-27 genes on IncF plasmids. The last ST131 isolate harboured bla CTX-M-27 on the chromosome in a unique site between gspC and gspD. These data highlight a probable human origin of the isolates with subsequent transmission from urban centres through wastewater to the wider environment.


Assuntos
Infecções por Escherichia coli , Antagonistas do Ácido Fólico , Aminoglicosídeos , Animais , Antibacterianos/farmacologia , Escherichia coli , Infecções por Escherichia coli/epidemiologia , Fluoroquinolonas/farmacologia , Água Doce , Humanos , Macrolídeos , Testes de Sensibilidade Microbiana , Nova Zelândia , Filogenia , Análise de Sequência , Tetraciclinas , Águas Residuárias , beta-Lactamases/genética
15.
Front Microbiol ; 13: 960748, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36033848

RESUMO

Antimicrobial resistance (AMR) is a global threat to human and animal health, with the misuse and overuse of antimicrobials being suggested as the main driver of resistance. In a global context, New Zealand (NZ) is a relatively low user of antimicrobials in animal production. However, the role antimicrobial usage on pasture-based dairy farms, such as those in NZ, plays in driving the spread of AMR within the dairy farm environment remains equivocal. Culture-based methods were used to determine the prevalence and distribution of extended-spectrum ß-lactamase (ESBL)- and AmpC-producing Escherichia coli from farm environmental samples collected over a 15-month period from two NZ dairy farms with contrasting management practices. Whole genome sequencing was utilised to understand the genomic epidemiology and antimicrobial resistance gene repertoire of a subset of third-generation cephalosporin resistant E. coli isolated in this study. There was a low sample level prevalence of ESBL-producing E. coli (faeces 1.7%; farm dairy effluent, 6.7% from Dairy 4 and none from Dairy 1) but AmpC-producing E. coli were more frequently isolated across both farms (faeces 3.3% and 8.3%; farm dairy effluent 38.4%, 6.7% from Dairy 1 and Dairy 4, respectively). ESBL- and AmpC-producing E. coli were isolated from faeces and farm dairy effluent in spring and summer, during months with varying levels of antimicrobial use, but no ESBL- or AmpC-producing E. coli were isolated from bulk tank milk or soil from recently grazed paddocks. Hybrid assemblies using short- and long-read sequence data from a subset of ESBL- and AmpC-producing E. coli enabled the assembly and annotation of nine plasmids from six E. coli, including one plasmid co-harbouring 12 antimicrobial resistance genes. ESBL-producing E. coli were infrequently identified from faeces and farm dairy effluent on the two NZ dairy farms, suggesting they are present at a low prevalence on these farms. Plasmids harbouring several antimicrobial resistance genes were identified, and bacteria carrying such plasmids are a concern for both animal and public health. AMR is a burden for human, animal and environmental health and requires a holistic "One Health" approach to address.

16.
Front Microbiol ; 12: 711040, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34745024

RESUMO

The objective of this study was to determine whether divergent feeding regimes during the first 41 weeks of the life of a calf are associated with long-term changes in the rumen microbiota and the associated fermentation end-products. Twenty-four calves (9 ± 5 days of age) were arranged in a 2 × 2 factorial design with two divergent treatments across three dietary phases. In phase 1 (P01), calves were offered a low-milk volume/concentrate starter diet with early weaning (CO) or high-milk volume/pasture diet and late weaning (FO). In phase 2 (P02), calves from both groups were randomly allocated to either high-quality (HQ) or low-quality (LQ) pasture grazing groups. In phase 3 (P03), calves were randomly allocated to one of two grazing groups and offered the same pasture-only diet. During each dietary phase, methane (CH4) and hydrogen (H2) emissions and dry matter intake (DMI) were measured in respiration chambers, and rumen samples for the evaluation of microbiota and short-chain fatty acid (SCFA) characterizations were collected. In P01, CO calves had a higher solid feed intake but a lower CH4 yield (yCH4) and acetate:propionate ratio (A:P) compared with FO calves. The ruminal bacterial community had lower proportions of cellulolytic bacteria in CO than FO calves. The archaeal community was dominated by Methanobrevibacter boviskoreani in CO calves and by Mbb. gottschalkii in FO calves. These differences, however, did not persist into P02. Calves offered HQ pastures had greater DMI and lower A:P ratio than calves offered LQ pastures, but yCH4 was similar between groups. The cellulolytic bacteria had lower proportions in HQ than LQ calves. In all groups, the archaeal community was dominated by Mbb. gottschalkii. No treatment interactions were observed in P02. In P03, all calves had similar DMI, CH4 and H2 emissions, SCFA proportions, and microbial compositions, and no interactions with previous treatments were observed. These results indicate that the rumen microbiota and associated fermentation end-products are driven by the diet consumed at the time of sampling and that previous dietary interventions do not lead to a detectable long-term microbial imprint or changes in rumen function.

17.
Front Microbiol ; 12: 710914, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34603238

RESUMO

The present study aimed to determine whether dietary supplementation with methanogen inhibitors during early life may lead to an imprint on the rumen microbial community and change the rumen function and performance of calves to 49-weeks of rearing. Twenty-four 4-day-old Friesian x Jersey cross calves were randomly assigned into a control and a treatment group. Treated calves were fed a combination of chloroform (CF) and 9,10-anthraquinone (AQ) in the solid diets during the first 12 weeks of rearing. Afterward, calves were grouped by treatments until week 14, and then managed as a single group on pasture. Solid diets and water were offered ad libitum. Methane measurements, and sample collections for rumen metabolite and microbial community composition were carried out at the end of weeks 2, 4, 6, 8, 10, 14, 24 and 49. Animal growth and dry matter intake (DMI) were regularly monitored over the duration of the experiment. Methane emissions decreased up to 90% whilst hydrogen emissions increased in treated compared to control calves, but only for up to 2 weeks after treatment cessation. The near complete methane inhibition did not affect calves' DMI and growth. The acetate:propionate ratio decreased in treated compared to control calves during the first 14 weeks but was similar at weeks 24 and 49. The proportions of Methanobrevibacter and Methanosphaera decreased in treated compared to control calves during the first 14 weeks; however, at week 24 and 49 the archaea community was similar between groups. Bacterial proportions at the phylum level and the abundant bacterial genera were similar between treatment groups. In summary, methane inhibition increased hydrogen emissions, altered the methanogen community and changed the rumen metabolite profile without major effects on the bacterial community composition. This indicated that the main response of the bacterial community was not a change in composition but rather a change in metabolic pathways. Furthermore, once methane inhibition ceased the methanogen community, rumen metabolites and hydrogen emissions became similar between treatment groups, indicating that perhaps using the treatments tested in this study, it is not possible to imprint a low methane microbiota into the rumen in the solid feed of pre-weaned calves.

18.
J Med Microbiol ; 70(10)2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34672922

RESUMO

Introduction. Antibiotic use, particularly amoxicillin-clavulanic acid in dairy farming, has been associated with an increased incidence of AmpC-hyperproducing Escherichia coli.Gap statement. There is limited information on the incidence of AmpC-hyperproducing E. coli from seasonal pasture-fed dairy farms.Aim. We undertook a New Zealand wide cross-sectional study to determine the prevalence of AmpC-producing E. coli carried by dairy cattle.Methodology. Paddock faeces were sampled from twenty-six dairy farms and were processed for the selective growth of both extended-spectrum beta-lactamase (ESBL)- and AmpC-producing E. coli. Whole genome sequence analysis was carried out on 35 AmpC-producing E. coli.Results. No ESBL- or plasmid mediated AmpC-producing E. coli were detected, but seven farms were positive for chromosomal mediated AmpC-hyperproducing E. coli. These seven farms were associated with a higher usage of injectable amoxicillin antibiotics. Whole genome sequence analysis of the AmpC-producing E. coli demonstrated that the same strain (<3 SNPs difference) of E. coli ST5729 was shared between cows on a single farm. Similarly, the same strain (≤15 SNPs difference) of E. coli ST8977 was shared across two farms (separated by approximately 425 km).Conclusion. These results infer that both cow-to-cow and farm-to-farm transmission of AmpC-producing E. coli has occurred.


Assuntos
Proteínas de Bactérias/metabolismo , Infecções por Escherichia coli/veterinária , Escherichia coli/enzimologia , Fezes/microbiologia , beta-Lactamases/metabolismo , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Proteínas de Bactérias/genética , Bovinos , Estudos Transversais , Indústria de Laticínios , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Escherichia coli/isolamento & purificação , Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/transmissão , Fazendas , Genoma Bacteriano/genética , Genótipo , Prevalência , Resistência beta-Lactâmica/efeitos dos fármacos , Resistência beta-Lactâmica/genética , beta-Lactamases/genética
19.
BMC Immunol ; 11: 39, 2010 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-20630110

RESUMO

BACKGROUND: Inappropriate responses to normal intestinal bacteria may be involved in the development of Inflammatory Bowel Diseases (IBD, e.g. Crohn's Disease (CD), Ulcerative Colitis (UC)) and variations in the host genome may mediate this process. IL-10 gene-deficient (Il10-/-) mice develop CD-like colitis mainly in the colon, in part due to inappropriate responses to normal intestinal bacteria including Enterococcus strains, and have therefore been used as an animal model of CD. Comprehensive characterization of changes in cecum gene expression levels associated with inflammation in the Il10-/- mouse model has recently been reported. Our aim was to characterize changes in colonic gene expression levels in Il10-/- and C57BL/6J (C57; control) mice resulting from oral bacterial inoculation with 12 Enterococcus faecalis and faecium (EF) strains isolated from calves or poultry, complex intestinal flora (CIF) collected from healthy control mice, or a mixture of the two (EF.CIF). We investigated two hypotheses: (1) that oral inoculation of Il10-/- mice would result in greater and more consistent intestinal inflammation than that observed in Il10-/- mice not receiving this inoculation, and (2) that this inflammation would be associated with changes in colon gene expression levels similar to those previously observed in human studies, and these mice would therefore be an appropriate model for human CD. RESULTS: At 12 weeks of age, total RNA extracted from intact colon was hybridized to Agilent 44 k mouse arrays. Differentially expressed genes were identified using linear models for microarray analysis (Bioconductor), and these genes were clustered using GeneSpring GX and Ingenuity Pathways Analysis software. Intestinal inflammation was increased in Il10-/- mice as a result of inoculation, with the strongest effect being in the EF and EF.CIF groups. Genes differentially expressed in Il10-/- mice as a result of EF or EF.CIF inoculation were associated with the following pathways: inflammatory disease (111 genes differentially expressed), immune response (209 genes), antigen presentation (11 genes, particularly major histocompatability complex Class II), fatty acid metabolism (30 genes) and detoxification (31 genes). CONCLUSIONS: Our results suggest that colonic inflammation in Il10-/- mice inoculated with solutions containing Enterococcus strains is associated with gene expression changes similar to those of human IBD, specifically CD, and that with the EF.CIF inoculum in particular this is an appropriate model to investigate food-gene interactions relevant to human CD.


Assuntos
Colo/metabolismo , Colo/microbiologia , Enterococcus/fisiologia , Regulação da Expressão Gênica , Inflamação/genética , Inflamação/microbiologia , Interleucina-10/genética , Animais , Peso Corporal , Análise por Conglomerados , Colo/patologia , Citocinas/sangue , Perfilação da Expressão Gênica , Humanos , Inflamação/sangue , Doenças Inflamatórias Intestinais/sangue , Doenças Inflamatórias Intestinais/genética , Interleucina-10/deficiência , Camundongos , Camundongos Endogâmicos C57BL , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteína Amiloide A Sérica/metabolismo , Transdução de Sinais/genética
20.
Appl Environ Microbiol ; 76(11): 3744-7, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20400570

RESUMO

Virulence gene profiles of atypical enteropathogenic Escherichia coli (aEPEC) and Shiga toxin-producing E. coli (STEC) from cattle, sheep, and humans were examined to determine the relationship between pathotypes. Shared virulence factors (intimin, EHEC hemolysin, serine protease, and a type II secretion system) were identified, suggesting a dynamic evolutionary relationship between aEPEC and STEC.


Assuntos
Doenças dos Bovinos/microbiologia , Escherichia coli Enteropatogênica/genética , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/veterinária , Doenças dos Ovinos/microbiologia , Escherichia coli Shiga Toxigênica/genética , Fatores de Virulência/genética , Animais , Bovinos , Escherichia coli Enteropatogênica/isolamento & purificação , Proteínas de Escherichia coli/genética , Evolução Molecular , Humanos , Nova Zelândia , Ovinos , Escherichia coli Shiga Toxigênica/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA