Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Diabetes ; 49(9): 1511-6, 2000 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-10969835

RESUMO

Based on population studies, we have hypothesized that changes in metabolism in pancreatic beta-cells precede changes in Ca2+. It is well known from single-cell Ca2+ studies that variable oscillatory patterns in Ca2+ occur in response to glucose stimulation. The present studies, using the clonal beta-cell line HIT-T-15, were undertaken to evaluate the relationship between glucose concentration, insulin secretion, and O2 consumption and to determine the Ca2+ dependency of glucose-induced changes in O2 consumption. In population studies, an excellent correlation was found between respiration and insulin secretion, with half-maximal values at approximately 1 mmol/l glucose for both respiration and secretion. In the absence of Ca2+, glucose stimulated O2 consumption but not insulin secretion. In single clonal beta-cells, a self-referencing O2 electrode was used to assess O2 consumption. Large-amplitude oscillations were found to occur in response to stimulation by glucose and were blocked by uncoupling respiration with carbonylcyanide p-(trifluoromethoxy)phenylhydrazone (FCCP). They were also blocked and respiration totally inhibited by antimycin A, an inhibitor of complex III of the respiratory chain. Half of the cells sampled (approximately 100 total) exhibited increased oscillatory O2 consumption in response to glucose. Oscillations in O2 occurred in response to glucose even in the absence of Ca2+, and their amplitude increased further on restoration of a normal extracellular Ca2+ level. These studies indicated that oscillatory O2 consumption was not dependent on Ca2+ but that the amplitude of the O2 oscillations increased in the presence of Ca2+, possibly reflecting the additional work involved in insulin secretion and Ca2+ pumping. These studies demonstrated, for the first time, a direct correlation between O2 consumption and insulin secretion, the oscillatory nature of O2 consumption in single cells, and the feasibility of using a highly sensitive noninvasive on-line self-referencing O2 electrode to monitor single beta-cell respiration.


Assuntos
Cálcio/fisiologia , Glucose/farmacologia , Insulina/metabolismo , Ilhotas Pancreáticas/fisiologia , Consumo de Oxigênio , Animais , Carbonil Cianeto p-Trifluormetoxifenil Hidrazona/farmacologia , Células Clonais , Secreção de Insulina , Ilhotas Pancreáticas/efeitos dos fármacos , Cinética , Oscilometria , Consumo de Oxigênio/efeitos dos fármacos , Desacopladores/farmacologia
3.
J Cell Physiol ; 106(3): 425-34, 1981 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-6260823

RESUMO

The mechanism of glucose entry into human vascular endothelial cells was studied in monolayer cultures of normal (primary) and virally (SV40) transformed umbilical vein endothelium. Radioisotopic uptake studies with the glucose analogues 2-deoxy-D-glucose, and 3-O-methyl-D-glucose, and the nonmetabolizable stereoisomer L-glucose, indicated the presence of a saturable, stereospecific hexose carrier mechanism in both cell types. In other experiments with D-glucose and 3-O-methyl-D-glucose, the phenomenon of countertransport was demonstrable. Hexose transport was not affected by KCN, dinitrophenol, or ouabain, but was inhibited by phloretin and phlorizin in a pattern consistent with facilitated diffusion. Kinetic constants were obtained for both 2-deoxy-D-glucose and 3-O-methyl-D-glucose uptake. Similar Km values (range, 3.3-4.7 mM) were noted with normal and transformed cells, whereas the apparent Vmax was 0.56 nmol/microliter cytosol/minute for primary cells and 1.7-2.5 nmol/mu cytosol/minute for transformed cells. Under standard culture conditions, as well as following 18 hours of serum deprivation, insulin at concentrations up to 10(-5) M did not appear to influence hexose uptake in either cell type. Metabolism of 14C(U)-D-glucose to 14CO2 also was not stimulated by insulin. The presence of an insulin-insensitive, facilitated transport system for glucose in vascular endothelium has relevance for glucose metabolism in this tissue, and potentially for the association of certain vascular diseases (e.g., diabetic microangiopathy, atherosclerosis) with altered glucose homeostasis.


Assuntos
Transformação Celular Viral , Endotélio/metabolismo , Glucose/metabolismo , Transporte Biológico/efeitos dos fármacos , Células Cultivadas , Desoxiglucose/metabolismo , Humanos , Insulina/farmacologia , Cinética , Metilglucosídeos/metabolismo , Vírus 40 dos Símios , Veias Umbilicais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA