Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Sensors (Basel) ; 22(21)2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36366136

RESUMO

In recent years, Vehicle Make and Model Recognition (VMMR) has attracted a lot of attention as it plays a crucial role in Intelligent Transportation Systems (ITS). Accurate and efficient VMMR systems are required in real-world applications including intelligent surveillance and autonomous driving. The paper introduces a new large-scale dataset and a novel deep learning paradigm for VMMR. A new large-scale dataset dubbed Diverse large-scale VMM (DVMM) is proposed collecting image-samples with the most popular vehicle brands operating in Europe. A novel VMMR framework is proposed which follows a two-branch architecture performing make and model recognition respectively. A two-stage training procedure and a novel decision module are proposed to process the make and model predictions and compute the final model prediction. In addition, a novel metric based on the true positive rate is proposed to compare classification confusion of the proposed 2B-2S and the baseline methods. A complex experimental validation is carried out, demonstrating the generality, diversity, and practicality of the proposed DVMM dataset. The experimental results show that the proposed framework provides 93.95% accuracy over the more diverse DVMM dataset and 95.85% accuracy over traditional VMMR datasets. The proposed two-branch approach outperforms the conventional one-branch approach for VMMR over small-, medium-, and large-scale datasets by providing lower vehicle model confusion and reduced inter-make ambiguity. The paper demonstrates the advantages of the proposed two-branch VMMR paradigm in terms of robustness and lower confusion relative to single-branch designs.


Assuntos
Aprendizado Profundo , Pesquisa , Coleta de Dados , Modelos Biológicos , Inteligência
2.
Sensors (Basel) ; 22(4)2022 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-35214335

RESUMO

A novel low-power distributed Visual Sensor Network (VSN) system is proposed, which performs real-time collaborative barcode localization, tracking, and robust identification. Due to a dynamic triggering mechanism and efficient transmission protocols, communication is organized amongst the nodes themselves rather than being orchestrated by a single sink node, achieving lower congestion and significantly reducing the vulnerability of the overall system. Specifically, early detection of the moving barcode is achieved through a dynamic triggering mechanism. A hierarchical transmission protocol is designed, within which different communication protocols are used, depending on the type of data exchanged among nodes. Real-Time Transport Protocol (RTP) is employed for video communication, while the Transmission Control Protocol (TCP) and Long Range (LoRa) protocol are used for passing messages amongst the nodes in the VSN. Through an extensive experimental evaluation, we demonstrate that the proposed distributed VSN brings substantial advantages in terms of accuracy, power savings, and time complexity compared to an equivalent system performing centralized processing.


Assuntos
Redes de Comunicação de Computadores , Tecnologia sem Fio , Algoritmos , Coleta de Dados
3.
Sensors (Basel) ; 21(1)2021 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-33401627

RESUMO

The paper proposes a novel instance segmentation method for traffic videos devised for deployment on real-time embedded devices. A novel neural network architecture is proposed using a multi-resolution feature extraction backbone and improved network designs for the object detection and instance segmentation branches. A novel post-processing method is introduced to ensure a reduced rate of false detection by evaluating the quality of the output masks. An improved network training procedure is proposed based on a novel label assignment algorithm. An ablation study on speed-vs.-performance trade-off further modifies the two branches and replaces the conventional ResNet-based performance-oriented backbone with a lightweight speed-oriented design. The proposed architectural variations achieve real-time performance when deployed on embedded devices. The experimental results demonstrate that the proposed instance segmentation method for traffic videos outperforms the you only look at coefficients algorithm, the state-of-the-art real-time instance segmentation method. The proposed architecture achieves qualitative results with 31.57 average precision on the COCO dataset, while its speed-oriented variations achieve speeds of up to 66.25 frames per second on the Jetson AGX Xavier module.

4.
Sensors (Basel) ; 20(17)2020 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-32872508

RESUMO

The range of applications of electromyography-based gesture recognition has increased over the last years. A common problem regularly encountered in literature is the inadequate data availability. Data augmentation, which aims at generating new synthetic data from the existing ones, is the most common approach to deal with this data shortage in other research domains. In the case of surface electromyography (sEMG) signals, there is limited research in augmentation methods and quite regularly the results differ between available studies. In this work, we provide a detailed evaluation of existing (i.e., additive noise, overlapping windows) and novel (i.e., magnitude warping, wavelet decomposition, synthetic sEMG models) strategies of data augmentation for electromyography signals. A set of metrics (i.e., classification accuracy, silhouette score, and Davies-Bouldin index) and visualizations help with the assessment and provides insights about their performance. Methods like signal magnitude warping and wavelet decomposition yield considerable increase (up to 16%) in classification accuracy across two benchmark datasets. Particularly, a significant improvement of 1% in the classification accuracy of the state-of-the-art model in hand gesture recognition is achieved.


Assuntos
Eletromiografia , Gestos , Reconhecimento Automatizado de Padrão , Algoritmos , Mãos , Humanos
5.
Opt Express ; 26(11): 14329-14339, 2018 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-29877473

RESUMO

The development of portable haematology analysers receives increased attention due to their deployability in resource-limited or emergency settings. Lens-free in-line holographic microscopy is one of the technologies that is being pushed forward in this regard as it eliminates complex and expensive optics, making miniaturisation and integration with microfluidics possible. On-chip flow cytometry enables high-speed capturing of individual cells in suspension, giving rise to high-throughput cell counting and classification. To perform a real-time analysis on this high-throughput content, we propose a fast and robust framework for the classification of leukocytes. The raw data consists of holographic acquisitions of leukocytes, captured with a high-speed camera as they are flowing through a microfluidic chip. Three different types of leukocytes are considered: granulocytes, monocytes and T-lymphocytes. The proposed method bypasses the reconstruction of the holographic data altogether by extracting Zernike moments directly from the frequency domain. By doing so, we introduce robustness to translations and rotations of cells, as well as to changes in distance of a cell with respect to the image sensor, achieving classification accuracies up to 96.8%. Furthermore, the reduced computational complexity of this approach, compared to traditional frameworks that involve the reconstruction of the holographic data, allows for very fast processing and classification, making it applicable in high-throughput flow cytometry setups.

6.
Artigo em Inglês | MEDLINE | ID: mdl-32784140

RESUMO

The reconstruction of a high resolution image given a low resolution observation is an ill-posed inverse problem in imaging. Deep learning methods rely on training data to learn an end-to-end mapping from a low-resolution input to a highresolution output. Unlike existing deep multimodal models that do not incorporate domain knowledge about the problem, we propose a multimodal deep learning design that incorporates sparse priors and allows the effective integration of information from another image modality into the network architecture. Our solution relies on a novel deep unfolding operator, performing steps similar to an iterative algorithm for convolutional sparse coding with side information; therefore, the proposed neural network is interpretable by design. The deep unfolding architecture is used as a core component of a multimodal framework for guided image super-resolution. An alternative multimodal design is investigated by employing residual learning to improve the training efficiency. The presented multimodal approach is applied to super-resolution of near-infrared and multi-spectral images as well as depth upsampling using RGB images as side information. Experimental results show that our model outperforms state-ofthe-art methods.

7.
Comput Biol Med ; 96: 147-156, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29573668

RESUMO

Three-part white blood cell differentials which are key to routine blood workups are typically performed in centralized laboratories on conventional hematology analyzers operated by highly trained staff. With the trend of developing miniaturized blood analysis tool for point-of-need in order to accelerate turnaround times and move routine blood testing away from centralized facilities on the rise, our group has developed a highly miniaturized holographic imaging system for generating lens-free images of white blood cells in suspension. Analysis and classification of its output data, constitutes the final crucial step ensuring appropriate accuracy of the system. In this work, we implement reference holographic images of single white blood cells in suspension, in order to establish an accurate ground truth to increase classification accuracy. We also automate the entire workflow for analyzing the output and demonstrate clear improvement in the accuracy of the 3-part classification. High-dimensional optical and morphological features are extracted from reconstructed digital holograms of single cells using the ground-truth images and advanced machine learning algorithms are investigated and implemented to obtain 99% classification accuracy. Representative features of the three white blood cell subtypes are selected and give comparable results, with a focus on rapid cell recognition and decreased computational cost.


Assuntos
Citometria de Fluxo/métodos , Holografia/métodos , Processamento de Imagem Assistida por Computador/métodos , Leucócitos/citologia , Análise de Célula Única/métodos , Algoritmos , Desenho de Equipamento , Citometria de Fluxo/instrumentação , Holografia/instrumentação , Humanos , Aprendizado de Máquina , Miniaturização , Análise de Célula Única/instrumentação
8.
IEEE Trans Image Process ; 26(1): 160-171, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28113181

RESUMO

We address the removal of canvas artifacts from high-resolution digital photographs and X-ray images of paintings on canvas. Both imaging modalities are common investigative tools in art history and art conservation. Canvas artifacts manifest themselves very differently according to the acquisition modality; they can hamper the visual reading of the painting by art experts, for instance, in preparing a restoration campaign. Computer-aided canvas removal is desirable for restorers when the painting on canvas they are preparing to restore has acquired over the years a much more salient texture. We propose a new algorithm that combines a cartoon-texture decomposition method with adaptive multiscale thresholding in the frequency domain to isolate and suppress the canvas components. To illustrate the strength of the proposed method, we provide various examples, for acquisitions in both imaging modalities, for paintings with different types of canvas and from different periods. The proposed algorithm outperforms previous methods proposed for visual photographs such as morphological component analysis and Wiener filtering and it also works for the digital removal of canvas artifacts in X-ray images.

9.
IEEE Trans Image Process ; 26(2): 751-764, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27831873

RESUMO

In support of art investigation, we propose a new source separation method that unmixes a single X-ray scan acquired from double-sided paintings. In this problem, the X-ray signals to be separated have similar morphological characteristics, which brings previous source separation methods to their limits. Our solution is to use photographs taken from the front-and back-side of the panel to drive the separation process. The crux of our approach relies on the coupling of the two imaging modalities (photographs and X-rays) using a novel coupled dictionary learning framework able to capture both common and disparate features across the modalities using parsimonious representations; the common component captures features shared by the multi-modal images, whereas the innovation component captures modality-specific information. As such, our model enables the formulation of appropriately regularized convex optimization procedures that lead to the accurate separation of the X-rays. Our dictionary learning framework can be tailored both to a single- and a multi-scale framework, with the latter leading to a significant performance improvement. Moreover, to improve further on the visual quality of the separated images, we propose to train coupled dictionaries that ignore certain parts of the painting corresponding to craquelure. Experimentation on synthetic and real data - taken from digital acquisition of the Ghent Altarpiece (1432) - confirms the superiority of our method against the state-of-the-art morphological component analysis technique that uses either fixed or trained dictionaries to perform image separation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA