Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 563(7730): 221-224, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30405228

RESUMO

Understanding strongly correlated phases of matter, such as the quark-gluon plasma and neutron stars, and in particular the dynamics of such systems, for example, following a Hamiltonian quench (a sudden change in some Hamiltonian parameter, such as the strength of interparticle interactions) is a fundamental challenge in modern physics. Ultracold atomic gases are excellent quantum simulators for these problems, owing to their tunable interparticle interactions and experimentally resolvable intrinsic timescales. In particular, they provide access to the unitary regime, in which the interactions are as strong as allowed by quantum mechanics. This regime has been extensively studied in Fermi gases1,2. The less-explored unitary Bose gases3-11 offer possibilities12 such as universal physics controlled solely by the gas density13,14 and new forms of superfluidity15-17. Here, through momentum- and time-resolved studies, we explore degenerate and thermal homogeneous Bose gases quenched to unitarity. In degenerate samples, we observe universal post-quench dynamics in agreement with the emergence of a prethermal state18-24 with a universal non-zero condensed fraction22,24. In thermal gases, the dynamic and thermodynamic properties generally depend on the gas density and the temperature, but we find that they can still be expressed in terms of universal dimensionless functions. Surprisingly, we find that the total quench-induced correlation energy is independent of the gas temperature. These measurements provide quantitative benchmarks and challenges for the theory of unitary Bose gases.

2.
Phys Rev Lett ; 126(17): 171301, 2021 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-33988453

RESUMO

We use our recent electric dipole moment (EDM) measurement data to constrain the possibility that the HfF^{+} EDM oscillates in time due to interactions with candidate dark matter axionlike particles (ALPs). We employ a Bayesian analysis method which accounts for both the look-elsewhere effect and the uncertainties associated with stochastic density fluctuations in the ALP field. We find no evidence of an oscillating EDM over a range spanning from 27 nHz to 400 mHz, and we use this result to constrain the ALP-gluon coupling over the mass range 10^{-22}-10^{-15} eV. This is the first laboratory constraint on the ALP-gluon coupling in the 10^{-17}-10^{-15} eV range, and the first laboratory constraint to properly account for the stochastic nature of the ALP field.

3.
Phys Rev Lett ; 125(24): 243401, 2020 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-33412063

RESUMO

We study three-atom inelastic scattering in ultracold ^{39}K near a Feshbach resonance of intermediate coupling strength. The nonuniversal character of such resonance leads to an abnormally large Efimov absolute length scale and a relatively small effective range r_{e}, allowing the features of the ^{39}K Efimov spectrum to be better isolated from the short-range physics. Meticulous characterization of and correction for finite-temperature effects ensure high accuracy on the measurements of these features at large-magnitude scattering lengths. For a single Feshbach resonance, we unambiguously locate four distinct features in the Efimov structure. Three of these features form ratios that obey the Efimov universal scaling to within 10%, while the fourth feature, occurring at a value of scattering length closest to r_{e}, instead deviates from the universal value.

4.
Phys Rev Lett ; 124(5): 053201, 2020 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-32083904

RESUMO

Cold molecules provide an excellent platform for quantum information, cold chemistry, and precision measurement. Certain molecules have enhanced sensitivity to beyond standard model physics, such as the electron's electric dipole moment (eEDM). Molecular ions are easily trappable and are therefore particularly attractive for precision measurements where sensitivity scales with interrogation time. Here, we demonstrate a spin precession measurement with second-scale coherence at the quantum projection noise (QPN) limit with hundreds of trapped molecular ions, chosen for their sensitivity to the eEDM rather than their amenability to state control and readout. Orientation-resolved resonant photodissociation allows us to simultaneously measure two quantum states with opposite eEDM sensitivity, reaching the QPN limit and fully exploiting the high count rate and long coherence.

5.
Phys Rev Lett ; 123(2): 020405, 2019 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-31386523

RESUMO

Three-body recombination in quantum gases is traditionally associated with heating, but it was recently found that it can also cool the gas. We show that in a partially condensed three-dimensional homogeneous Bose gas three-body loss could even purify the sample, that is, reduce the entropy per particle and increase the condensed fraction η. We predict that the evolution of η under continuous three-body loss can, depending on small changes in the initial conditions, exhibit two qualitatively different behaviors-if it is initially above a certain critical value, η increases further, whereas clouds with lower initial η evolve towards a thermal gas. These dynamical effects should be observable under realistic experimental conditions.

6.
Phys Rev Lett ; 123(23): 233402, 2019 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-31868479

RESUMO

We perform precise studies of two- and three-body interactions near an intermediate-strength Feshbach resonance in ^{39}K at 33.5820(14) G. Precise measurement of dimer binding energies, spanning three orders of magnitude, enables the construction of a complete two-body coupled-channel model for determination of the scattering lengths with an unprecedented low uncertainty. Utilizing an accurate scattering length map, we measure the precise location of the Efimov ground state to test van der Waals universality. Precise control of the sample's temperature and density ensures that systematic effects on the Efimov trimer state are well understood. We measure the ground Efimov resonance location to be at -14.05(17) times the van der Waals length r_{vdW}, significantly deviating from the value of -9.7r_{vdW} predicted by van der Waals universality. We find that a refined multichannel three-body model, built on our measurement of two-body physics, can account for this difference and even successfully predict the Efimov inelasticity parameter η.

7.
Phys Rev Lett ; 119(14): 143401, 2017 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-29053296

RESUMO

We convert a strongly interacting ultracold Bose gas into a mixture of atoms and molecules by sweeping the interactions from resonant to weak. By analyzing the decay dynamics of the molecular gas, we show that in addition to Feshbach dimers it contains Efimov trimers. Typically around 8% of the total atomic population is bound into trimers, identified by their density-independent lifetime of about 100 µs. The lifetime of the Feshbach dimers shows a density dependence due to inelastic atom-dimer collisions, in agreement with theoretical calculations. We also vary the density of the gas across a factor of 250 and investigate the corresponding atom loss rate at the interaction resonance.

8.
Phys Rev Lett ; 119(15): 153001, 2017 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-29077451

RESUMO

We describe the first precision measurement of the electron's electric dipole moment (d_{e}) using trapped molecular ions, demonstrating the application of spin interrogation times over 700 ms to achieve high sensitivity and stringent rejection of systematic errors. Through electron spin resonance spectroscopy on ^{180}Hf^{19}F^{+} in its metastable ^{3}Δ_{1} electronic state, we obtain d_{e}=(0.9±7.7_{stat}±1.7_{syst})×10^{-29} e cm, resulting in an upper bound of |d_{e}|<1.3×10^{-28} e cm (90% confidence). Our result provides independent confirmation of the current upper bound of |d_{e}|<9.4×10^{-29} e cm [J. Baron et al., New J. Phys. 19, 073029 (2017)NJOPFM1367-263010.1088/1367-2630/aa708e], and offers the potential to improve on this limit in the near future.

9.
Phys Rev Lett ; 117(5): 055301, 2016 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-27517776

RESUMO

When an impurity is immersed in a Bose-Einstein condensate, impurity-boson interactions are expected to dress the impurity into a quasiparticle, the Bose polaron. We superimpose an ultracold atomic gas of ^{87}Rb with a much lower density gas of fermionic ^{40}K impurities. Through the use of a Feshbach resonance and radio-frequency spectroscopy, we characterize the energy, spectral width, and lifetime of the resultant polaron on both the attractive and the repulsive branches in the strongly interacting regime. The width of the polaron in the attractive branch is narrow compared to its binding energy, even as the two-body scattering length diverges.

10.
Science ; 381(6653): 46-50, 2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37410848

RESUMO

The imbalance of matter and antimatter in our Universe provides compelling motivation to search for undiscovered particles that violate charge-parity symmetry. Interactions with vacuum fluctuations of the fields associated with these new particles will induce an electric dipole moment of the electron (eEDM). We present the most precise measurement yet of the eEDM using electrons confined inside molecular ions, subjected to a huge intramolecular electric field, and evolving coherently for up to 3 seconds. Our result is consistent with zero and improves on the previous best upper bound by a factor of ~2.4. Our results provide constraints on broad classes of new physics above [Formula: see text] electron volts, beyond the direct reach of the current particle colliders or those likely to be available in the coming decades.

11.
Phys Rev Lett ; 107(9): 093002, 2011 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-21929235

RESUMO

We have demonstrated a new technique that provides massively parallel comb spectroscopy sensitive specifically to ions through the combination of cavity-enhanced direct frequency comb spectroscopy with velocity-modulation spectroscopy. Using this novel system, we have measured electronic transitions of HfF⁺ and achieved a fractional absorption sensitivity of 3×10⁻7 recorded over 1500 simultaneous channels spanning 150 cm⁻¹ around 800 nm with an absolute frequency accuracy of 30 MHz (0.001 cm⁻¹). A fully sampled spectrum consisting of interleaved measurements is acquired in 30 min.

12.
J Chem Phys ; 135(15): 154308, 2011 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-22029314

RESUMO

Autoionization of Rydberg states of HfF, prepared using the optical-optical double resonance technique, holds promise to create HfF(+) in a particular Zeeman level of a rovibronic state for an electron electric dipole moment search. We characterize a vibronic band of Rydberg HfF at 54 cm(-1) above the lowest ionization threshold and directly probe the state of the ions formed from this vibronic band by performing laser-induced fluorescence on the ions. The Rydberg HfF molecules show a propensity to decay into only a few ion rotational states of a given parity and are found to preserve their orientation qualitatively upon autoionization. We show empirically that we can create 30% of the total ion yield in a particular ∣J(+), M(+) state and present a simplified model describing autoionization from a given Rydberg state that assumes no angular dynamics.

13.
Phys Rev Lett ; 94(9): 090405, 2005 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-15783948

RESUMO

An atom Michelson interferometer is implemented on an "atom chip." The chip uses lithographically patterned conductors and external magnetic fields to produce and guide a Bose-Einstein condensate. Splitting, reflecting, and recombining of condensate atoms are achieved by a standing-wave light field having a wave vector aligned along the atom waveguide. A differential phase shift between the two arms of the interferometer is introduced by either a magnetic-field gradient or with an initial condensate velocity. Interference contrast is still observable at 20% with an atom propagation time of 10 ms.

14.
Chemphyschem ; 3(6): 476-93, 2002 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-12465486

RESUMO

Bose-Einstein condensates of dilute gases offer a rich field to study fundamental quantum-mechanical processes, manipulation of the speed at which light propogates, observation of atomic pair-formation and superfluidity, or even simulating white dwarf stars. Still more radical applications are on the horizon. However, their initial creation was a masterpiece of experimental physics. After an initial process of laser cooling (which itself won its developers the 1997 Nobel Prize), atoms in a magnetic-optical trap must be safely transferred into a purely magnetic trap, where the condensation process begins at 170 nK and 20 nK a pure condensate of 2000 atoms could be created. More astonishingly, Wieman and Cornell showed these low temperatures could be achieved in "bench scale" equipment rather than the massive pieces normally demanded by cryoscience. For their 1995 discovery of this new state of matter, they were awarded the 2001 Nobel Prize in Physics.


Assuntos
Físico-Química/história , Gases/química , História do Século XX , Prêmio Nobel , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA