Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biomech Eng ; 146(4)2024 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-38270930

RESUMO

The human body represents a collection of interacting systems that range in scale from nanometers to meters. Investigations from a systems perspective focus on how the parts work together to enact changes across spatial scales, and further our understanding of how systems function and fail. Here, we highlight systems approaches presented at the 2022 Summer Biomechanics, Bio-engineering, and Biotransport Conference in the areas of solid mechanics; fluid mechanics; tissue and cellular engineering; biotransport; and design, dynamics, and rehabilitation; and biomechanics education. Systems approaches are yielding new insights into human biology by leveraging state-of-the-art tools, which could ultimately lead to more informed design of therapies and medical devices for preventing and treating disease as well as rehabilitating patients using strategies that are uniquely optimized for each patient. Educational approaches can also be designed to foster a foundation of systems-level thinking.


Assuntos
Bioengenharia , Análise de Sistemas , Humanos , Fenômenos Biomecânicos , Biofísica
2.
J Nat Prod ; 86(5): 1159-1170, 2023 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-37104545

RESUMO

Sophorolipids are biosurfactants derived from the nonpathogenic yeasts such as Starmerella bombicola with potential efficacy in anticancer applications. Simple and cost-effective synthesis of these drugs makes them a promising alternative to traditional chemotherapeutics, pending their success in preliminary drug-screening. Drug-screening typically utilizes 2D cell monolayers due to their simplicity and ease of high-throughput assessment. However, 2D assays fail to capture the complexity and 3D context of the tumor microenvironment and have consequently been implicated in the high percentage of drugs investigated in vitro that later fail in clinical trials. Herein, we screened two sophorolipid candidates and a clinically-used chemotherapeutic, doxorubicin, on in vitro breast cancer models ranging from 2D monolayers to 3D spheroids, employing optical coherence tomography to confirm these morphologies. We calculated corresponding IC50 values for these drugs and found one of the sophorolipids to have comparable toxicities to the chemotherapeutic control. Our findings show increased drug resistance associated with model dimensionality, such that all drugs tested showed that 3D spheroids exhibited higher IC50 values than their 2D counterparts. These findings demonstrate promising preliminary data to support the use of sophorolipids as a more affordable alternative to traditional clinical interventions and demonstrate the importance of 3D tumor models in assessing drug response.


Assuntos
Antineoplásicos , Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Ácidos Oleicos/uso terapêutico , Microambiente Tumoral
3.
J Biomech Eng ; 145(3)2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36149022

RESUMO

Hydrogel microbeads are engineered spherical microgels widely used for biomedical applications in cell cultures, tissue engineering, and drug delivery. Their mechanical and physical properties (i.e., modulus, porosity, diffusion) heavily influence their utility by affecting encapsulated cellular behavior, biopayload elution kinetics, and stability for longer term cultures. There is a need to quantify these properties to guide microbead design for effective application. However, there are few techniques with the µN-level resolution required to evaluate these relatively small, compliant constructs. To circumvent mechanically testing individual microbeads, researchers often approximate microbead properties by characterizing larger bulk gel analogs of the same material formulation. This approach provides some insight into the hydrogel properties. However, bulk gels possess key structural and mechanical differences compared to their microbead equivalents, which may limit their accuracy and utility as analogs for estimating microbead properties. Herein, we explore how microbead properties are influenced by hydrogel formulation (i.e., alginate concentration, divalent cation crosslinker, and crosslinker concentration), and whether these trends are accurately reflected in bulk gel analogs. To accomplish this, we utilize laser direct-write bioprinting to create 12 × 12 arrays of alginate microbeads and characterize all 144 microbeads in parallel using a commercially available microcompression system. In this way, the compressive load is distributed across a large number of beads, thus amplifying sample signal. Comparing microbead properties to those of their bulk gel analogs, we found that their trends in modulus, porosity, and diffusion with hydrogel formulation are consistent, yet bulk gels exhibit significant discrepancies in their measured values.


Assuntos
Alginatos , Bioimpressão , Alginatos/química , Microesferas , Hidrogéis , Bioimpressão/métodos , Engenharia Tecidual/métodos
4.
Biomacromolecules ; 23(5): 2150-2159, 2022 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-35468284

RESUMO

This study examined poly(glycerol-1,8-octanediol-sebacate) (PGOS) copolymers with low-level substitution of O (1,8-octanediol) for G (glycerol) units (G/O ratios 0.5:0.5, 0.66:0.33, 0.75:0.25, 0.8:0.2, and 0.91:0.09) prepared in bulk by immobilized Candida antarctica Lipase B (N435) catalysis. The central question explored was the extent that exchanging less than half of poly(glycerol sebacate) (PGS) glycerol units with 1,8-octanediol can be used as a strategy to fine-tune biomaterial properties. Synthesized copolymers having G/O ratios of 0.66:0.33, 0.75:0.25, 0.8:0.2, and 0.91:0.09 have similar molecular weights, where Mw varied from 52,800 to 63,800 g/mol, Mn varied from 5100 to 6450 g/mol, and DM (molecular mass dispersity, Mw/Mn) values were also similar (8.4-11.4). All of the copolymers were branched, and dendritic glycerol units reached 11% for PGOS-0.91:0.09:1.0. Analysis of DSC second heating scans revealed that copolymers with higher 1,8-octanediol contents have relatively higher Tm and ΔHf values. Over the copolymer compositional range studied herein, Tm and ΔHf values varied from 5.3 to 21.1 °C and 8.0 to 23.1 J/g, respectively. Stress-strain curves of PGOS copolymers cured at 140 °C for 48 h exhibited either a unimodal, bimodal, or trimodal response to tensile loading. Varying G/O from 10:1 to 2:1 resulted in significant increases in the peak stress (0.26-4.01 MPa), preyield modulus (0.65-62.59 MPa), failure to strain (64-110%), and failure toughness (0.1-0.56 MPa). This demonstrates that altering the G/O ratio over a narrow compositional range provides biomaterials with widely different yet tunable mechanical properties. Further investigation of PGOS-0.75:0.25:1.0 films revealed that varying the cure conditions from 120 to 160 °C for periods of 24-72 h provides access to biomaterials with a failure strain range from 15 to 224% and Young's modulus from 1.17 to 10.85 MPa. Hence, using the dual variables of compositional variation and changes in cure conditions provides an exciting platform for PGS analogues to optimize material-tissue interactions. Increased contents of 1,8-octanediol slowed in vitro degradation. Slowed degradation of PGOS relative to PGS will be valuable for use in slower healing wounds.


Assuntos
Materiais Biocompatíveis , Glicerol , Catálise , Decanoatos , Lipase
5.
Bioorg Med Chem ; 65: 116787, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35526504

RESUMO

Sophorolipids (SLs) are biosurfactants synthesized as secondary metabolites by non-pathogenic yeasts and other microorganisms. They are members of glycolipid microbial surfactant family that consists of a sophorose polar head group and, most often, an ω-1 hydroxylated fatty acid glycosidically linked to the sophorose moiety. Since the fermentative production of SLs is high (>200 g/L), SLs have the potential to provide low-cost therapeutics. Natural and modified SLs possess anti-cancer activity against a wide range of cancer cell lines such as those derived from breast, cervical, colon, liver, brain, and the pancreas. Corresponding data on their cytotoxicity against noncancerous cell lines including human embryo kidney, umbilical vein, and mouse fibroblasts is also discussed. These results are compiled to elucidate trends in SL-structures that lead to higher efficacy against cancer cell lines and lower cytotoxicity for normal cell lines. While extrapolation of these results provides some insights into the design of SLs with optimal therapeutic indices, we also provide a critical assessment of gaps and inconsistencies in the literature as well as the lack of data connecting structure-to-anticancer and cytotoxicity on normal cells. Furthermore, SL-mechanism of action against cancer cell lines, that includes proliferation inhibition, induction of apoptosis, membrane disruption and mitochondria mediated pathways are discussed. Perspectives on future research to develop SL anticancer therapeutics is discussed.


Assuntos
Glicolipídeos , Ácidos Oleicos , Animais , Ácidos Graxos/química , Glicolipídeos/química , Glicolipídeos/farmacologia , Camundongos , Tensoativos/química
6.
J Biomech Eng ; 144(9)2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35244139

RESUMO

Bioreactors are commonly used to apply biophysically relevant stimulations to tissue-engineered constructs in order to explore how these stimuli influence tissue development, healing, and homeostasis, and they offer great flexibility because key features of the stimuli (e.g., duty cycle, frequency, amplitude, and duration) can be controlled to elicit a desired cellular response. However, most bioreactors that apply mechanical and electrical stimulations do so to a scaffold after the construct has developed, preventing study of the influence these stimuli have on early construct development. To enable such exploration, there is a need for a bioreactor that allows the direct application of mechanical and electrical stimulation to constructs as they develop. Herein, we develop and calibrate a bioreactor, based on our previously established modified Flexcell system, to deliver precise mechanical and electrical stimulation, either independently or in combination, to developing scaffold-free tissue constructs. Linear calibration curves were established, then used to apply precise dynamic mechanical and electrical stimulations, over a range of physiologically relevant strains (0.50%, 0.70%, 0.75%, 1.0%, and 1.5%) and voltages (1.5 and 3.5 V), respectively. Following calibration, applied mechanical and electrical stimulations were not statistically different from their desired target values and were consistent whether delivered independently or in combination. Concurrent delivery of mechanical and electrical stimulation resulted in a negligible change in mechanical (<2%) and electrical (<1%) values, compared to their independently delivered values. With this calibrated bioreactor, we can apply precise, controlled, reproducible mechanical and electrical stimulations, alone or in combination, to scaffold-free, tissue-engineered constructs as they develop.


Assuntos
Reatores Biológicos , Engenharia Tecidual , Células Cultivadas , Estimulação Elétrica , Engenharia Tecidual/métodos
7.
J Biomech Eng ; 143(7)2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33537704

RESUMO

Tendon, ligament, and skeletal muscle are highly organized tissues that largely rely on a hierarchical collagenous matrix to withstand high tensile loads experienced in activities of daily life. This critical biomechanical role predisposes these tissues to injury, and current treatments fail to recapitulate the biomechanical function of native tissue. This has prompted researchers to pursue engineering functional tissue replacements, or dysfunction/disease/development models, by emulating in vivo stimuli within in vitro tissue engineering platforms-specifically mechanical stimulation, as well as active contraction in skeletal muscle. Mechanical loading is critical for matrix production and organization in the development, maturation, and maintenance of native tendon, ligament, and skeletal muscle, as well as their interfaces. Tissue engineers seek to harness these mechanobiological benefits using bioreactors to apply both static and dynamic mechanical stimulation to tissue constructs, and induce active contraction in engineered skeletal muscle. The vast majority of engineering approaches in these tissues are scaffold-based, providing interim structure and support to engineered constructs, and sufficient integrity to withstand mechanical loading. Alternatively, some recent studies have employed developmentally inspired scaffold-free techniques, relying on cellular self-assembly and matrix production to form tissue constructs. Whether utilizing a scaffold or not, incorporation of mechanobiological stimuli has been shown to improve the composition, structure, and biomechanical function of engineered tendon, ligament, and skeletal muscle. Together, these findings highlight the importance of mechanobiology and suggest how it can be leveraged to engineer these tissues and their interfaces, and to create functional multitissue constructs.


Assuntos
Engenharia Tecidual
8.
Biomacromolecules ; 21(8): 3197-3206, 2020 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-32559083

RESUMO

A family of poly(glycerol sebacate) (PGS) analogues were synthesized by Candida antarctica lipase B (CALB) catalysis to tailor biomaterial properties. Different fractions of glycerol (G) units in PGS were replaced by 1,8-octanediol (O) units. Poly(glycerol-1,8-octanediol-sebacate), PGOS, synthesized by CALB catalysis with a 1:3 molar ratio of G to O units has Mn and Mw values of 9500 and 92,000, respectively. PGS undergoes fiber fusion during electrospinning, and cross-linked PGS rapidly resorbs when implanted. By decreasing the molar ratio of glycerol-to-octanediol from 1:1 to 1:4, the peak melting temperature (Tm) increased from 27 to 47 °C. PGOS with 1:3 G to O units was electrospun into nanofibers without the need for a second component. The copolymer is semicrystalline and, when cross-linked, undergoes slow in vitro mass loss (3.5 ± 1.0% in 31 days) at pH 7.4 and 37 °C. Furthermore, PGOS cross-linked films have an elastic modulus of 106.1 ± 18.6 MPa, which is more than 100 times that of cross-linked PGS. New PGOS polymers showed tunable molecular weights, better thermal properties, and excellent electrospinnability. This work expanded PGS analogues' function, making these suitable biodegradable polymers for various biomedical applications.


Assuntos
Decanoatos , Glicerol , Basidiomycota , Glicerol/análogos & derivados , Polimerização , Polímeros , Engenharia Tecidual , Alicerces Teciduais
9.
J Biomech Eng ; 142(7)2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31913457

RESUMO

Advances in fabrication have allowed tissue engineers to better mimic complex structures and tissue interfaces by designing nanofibrous scaffolds with spatially graded material properties. However, the nonuniform properties that grant the desired biomechanical function also make these constructs difficult to characterize. In light of this, we developed a novel procedure to create graded nanofibrous scaffolds and determine the spatial distribution of their material properties. Multilayered nanofiber constructs were synthesized, controlling spatial gradation of the stiffness to mimic the soft tissue gradients found in tendon or ligament tissue. Constructs were characterized using uniaxial tension testing with digital image correlation (DIC) to measure the displacements throughout the sample, in a noncontacting fashion, as it deformed. Noise was removed from the displacement data using principal component analysis (PCA), and the final denoised field served as the input to an inverse elasticity problem whose solution determines the spatial distribution of the Young's modulus throughout the material, up to a multiplicative factor. Our approach was able to construct, characterize, and determine the spatially varying moduli, in four electrospun scaffolds, highlighting its great promise for analyzing tissues and engineered constructs with spatial gradations in modulus, such as those at the interfaces between two disparate tissues (e.g., myotendinous junction, tendon- and ligament-to-bone entheses).


Assuntos
Alicerces Teciduais , Ligamentos , Nanofibras , Poliésteres , Tendões , Engenharia Tecidual
10.
Biotechnol Bioeng ; 113(10): 2264-74, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27070458

RESUMO

Microcapsules are shelled 3D microenvironments, with a liquid core. These core-shelled structures enable cell-cell contact, cellular proliferation and aggregation within the capsule, and can be utilized for controlled release of encapsulated contents. Traditional microcapsule fabrication methods provide limited control of capsule size, and are unable to control capsule placement. To overcome these limitations, we demonstrate size and spatial control of poly-l-lysine and chitosan microcapsules, using laser direct-write (LDW) printing, and subsequent processing, of alginate microbeads. Additionally, microbeads were used as volume pixels (voxels) to form continuous 3D hydrogel structures, which were processed like capsules, to form custom shelled aqueous-core 3D structures of prescribed geometry; such as strands, rings, and bifurcations. Heterogeneous structures were also created with controlled initial locations of different cell types, to demonstrate the ability to prescribe cell signaling (heterotypic and homotypic) in co-culture conditions. Herein, we demonstrate LDW's ability to fabricate intricate 3D structures, essentially with "printed macroporosity," and to precisely control structural composition by bottom-up fabrication in a bead-by-bead manner. The structural and compositional control afforded by this process enables the creation of a wide range of new constructs, with many potential applications in tissue engineering and regenerative medicine. Biotechnol. Bioeng. 2016;113: 2264-2274. © 2016 Wiley Periodicals, Inc.


Assuntos
Cápsulas/química , Microambiente Celular , Lasers , Microesferas , Impressão Molecular/métodos , Impressão Tridimensional , Cápsulas/efeitos da radiação , Humanos
11.
Langmuir ; 32(12): 3004-14, 2016 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-26934283

RESUMO

Laser-induced forward transfer-based laser printing has been being implemented as a promising orifice-free direct-write strategy for different printing applications. The printing quality during laser printing is largely affected by the jet and droplet formation process and subsequential impingement. The objective of this study is to investigate the impingement-based printing type and resulting printing quality during the laser printing of viscoelastic alginate solutions, which are representative inks for soft structure printing such as bioprinting. Three printing types are identified: droplet-impingement printing, jet-impingement printing with multiple breakups, and jet-impingement printing with a single breakup. Printing quality, in terms of printed droplet morphology and size, has been investigated as a function of alginate concentration, laser fluence, and direct-writing height based on a time-resolved imaging approach and microarrays of printed droplets. Of these, the best printing quality is achieved with single-breakup jet-impingement printing, followed by multiple-breakup jet-impingement printing, with droplet-impingement printing producing the lowest quality printing. The printing quality can be improved by using high-concentration alginate solutions. The increase of laser fluence may lead to a well-defined primary droplet for low-concentration alginate solutions; however, this can cause the droplet diameter to increase, which may not be desirable. The direct-writing height (i.e., ribbon coating-receiving substrate distance) also influences the print quality. For example, an increase in direct-writing height can cause the printing type to change from the ideal jet-impingement with a single breakup, to the jet-impingement with multiple breakups, and even the least desired droplet-impingement printing, with only slight variations in droplet diameter.

12.
Am J Physiol Cell Physiol ; 309(8): C551-7, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26289752

RESUMO

The increase in steady-state force after active lengthening in skeletal muscle, termed force enhancement (FE), has been observed for nearly one century. Although demonstrated experimentally at various structural levels, the underlying mechanism(s) remain unknown. We recently showed that the Drosophila jump muscle is an ideal model for investigating mechanisms behind muscle physiological properties, because its mechanical characteristics, tested thus far, duplicate those of fast mammalian skeletal muscles, and Drosophila has the advantage that it can be more easily genetically modified. To determine if Drosophila would be appropriate to investigate FE, we performed classic FE experiments on this muscle. Steady-state FE (FESS), following active lengthening, increased by 3, 7, and 12% of maximum isometric force, with increasing stretch amplitudes of 5, 10, and 20% of optimal fiber length (FLOPT), yet was similar for stretches across increasing stretch velocities of 4, 20, and 200% FLOPT/s. These FESS characteristics of the Drosophila jump muscle closely mimic those observed previously. Jump muscles also displayed typical transient FE characteristics. The transient force relaxation following active stretch was fit with a double exponential, yielding two phases of force relaxation: a fast initial relaxation of force, followed by a slower recovery toward steady state. Our analyses identified a negative correlation between the slow relaxation rate and FESS, indicating that there is likely an active component contributing to FE, in addition to a passive component. Herein, we have established the Drosophila jump muscle as a new and genetically powerful experimental model to investigate the underlying mechanism(s) of FE.


Assuntos
Drosophila/fisiologia , Contração Isométrica/fisiologia , Animais , Fenômenos Mecânicos , Modelos Biológicos , Músculo Esquelético/fisiologia , Miosinas/metabolismo
13.
Sci Rep ; 14(1): 9495, 2024 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664570

RESUMO

The biological mechanisms regulating tenocyte differentiation and morphological maturation have not been well-established, partly due to the lack of reliable in vitro systems that produce highly aligned collagenous tissues. In this study, we developed a scaffold-free, three-dimensional (3D) tendon culture system using mouse tendon cells in a differentially adherent growth channel. Transforming Growth Factor-ß (TGFß) signaling is involved in various biological processes in the tendon, regulating tendon cell fate, recruitment and maintenance of tenocytes, and matrix organization. This known function of TGFß signaling in tendon prompted us to utilize TGFß1 to induce tendon-like structures in 3D tendon constructs. TGFß1 treatment promoted a tendon-like structure in the peripheral layer of the constructs characterized by increased thickness with a gradual decrease in cell density and highly aligned collagen matrix. TGFß1 also enhanced cell proliferation, matrix production, and morphological maturation of cells in the peripheral layer compared to vehicle treatment. TGFß1 treatment also induced early tenogenic differentiation and resulted in sufficient mechanical integrity, allowing biomechanical testing. The current study suggests that this scaffold-free 3D tendon cell culture system could be an in vitro platform to investigate underlying biological mechanisms that regulate tenogenic cell differentiation and matrix organization.


Assuntos
Diferenciação Celular , Proliferação de Células , Tendões , Tenócitos , Fator de Crescimento Transformador beta1 , Animais , Fator de Crescimento Transformador beta1/farmacologia , Fator de Crescimento Transformador beta1/metabolismo , Tendões/citologia , Tendões/metabolismo , Camundongos , Diferenciação Celular/efeitos dos fármacos , Tenócitos/metabolismo , Tenócitos/citologia , Proliferação de Células/efeitos dos fármacos , Técnicas de Cultura de Células em Três Dimensões/métodos , Células Cultivadas , Técnicas de Cultura de Células/métodos , Matriz Extracelular/metabolismo , Colágeno/metabolismo , Engenharia Tecidual/métodos
14.
Oncogene ; 43(9): 650-667, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38184712

RESUMO

Transient early endosome (EE)-mitochondria interactions can mediate mitochondrial iron translocation, but the associated mechanisms are still elusive. We showed that Divalent Metal Transporter 1 (DMT1) sustains mitochondrial iron translocation via EE-mitochondria interactions in triple-negative MDA-MB-231, but not in luminal A T47D breast cancer cells. DMT1 silencing increases labile iron pool (LIP) levels and activates PINK1/Parkin-dependent mitophagy in MDA-MB-231 cells. Mitochondrial bioenergetics and the iron-associated protein profile were altered by DMT1 silencing and rescued by DMT1 re-expression. Transcriptomic profiles upon DMT1 silencing are strikingly different between 2D and 3D culture conditions, suggesting that the environment context is crucial for the DMT1 knockout phenotype observed in MDA-MB-231 cells. Lastly, in vivo lung metastasis assay revealed that DMT1 silencing promoted the outgrowth of lung metastatic nodules in both human and murine models of triple-negative breast cancer cells. These findings reveal a DMT1-dependent pathway connecting EE-mitochondria interactions to mitochondrial iron translocation and metastatic fitness of breast cancer cells.


Assuntos
Neoplasias da Mama , Ferro , Animais , Feminino , Humanos , Camundongos , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Endossomos/metabolismo , Ferro/metabolismo , Mitocôndrias/metabolismo , Mitofagia
15.
Can J Surg ; 56(1): 35-40, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23187038

RESUMO

BACKGROUND: The purpose of this study was to compare the biomechanical properties of locked versus nonlocked lateral fibular bridge plating of comminuted, unstable ankle fractures in a mode of catastrophic failure. METHODS: We created comminuted Weber C fractures in 8 paired limbs from fresh cadavers. Fractures were plated with either standard or locked one-third tubular bridge plating techniques. Specimens were biomechanically evaluated by external rotation to failure while subjected to a compressive load approximating body weight. We measured the angle to failure, torque to failure, energy to failure and construct stiffness. RESULTS: There was no significant difference in construct stiffness or other biomechanical properties between locked and standard one-third tubular plating techniques. CONCLUSION: We found no difference in biomechanical properties between locked and standard bridge plating of a comminuted Weber C fibular fracture in a model of catastrophic failure. It is likely that augmentation of fixation with K-wires or transtibial screws provides a construct superior to locked bridge plating alone. Further biomechanical and clinical analysis is required to improve understanding of the role of locked plating in ankle fractures and in osteoporotic bone.


Assuntos
Traumatismos do Tornozelo/complicações , Placas Ósseas , Fíbula/lesões , Fíbula/cirurgia , Fixação Interna de Fraturas/métodos , Fraturas Ósseas/cirurgia , Fraturas Cominutivas/cirurgia , Idoso , Idoso de 80 Anos ou mais , Desenho de Equipamento , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Tamanho da Amostra
16.
J Orthop Res ; 41(10): 2093-2104, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-36794495

RESUMO

The wide variety of cell and tissue culture systems used to study and engineer tendons can make it difficult to choose the best approach and "optimal" culture conditions to test a given hypothesis. Therefore, a breakout session was organized at the 2022 ORS Tendon Section Meeting that focused on establishing a set of guidelines for conducting cell and tissue culture studies of tendon. This paper summarizes the outcomes of that discussion and presents recommendations for future studies. In the case of studying tendon cell behavior, cell and tissue culture systems are reductionist models in which the culture conditions should be strictly defined to approximate the in vivo condition as closely as possible. In contrast, for tissue engineering tendon replacements, the culture conditions do not need to replicate native tendon, but the outcome measures for success should be narrowly defined for the specific clinical application. Common recommendations for both applications are that researchers should perform a baseline phenotypic characterization of the cells that are ultimately used for experimentation. For models of tendon cell behavior, culture conditions should be well justified by existing literature and meticulously reported, tissue explant viability should be assessed, and comparisons to in vivo conditions should be made to determine baseline physiological relevance. For tissue engineering applications, the functional/structural/compositional outcome targets should be defined by the specific tendons they seek to replace, with key biologic and material properties prioritized for construct assessment. Lastly, when engineering tendon replacements, researchers should utilize clinically approved cGMP materials to facilitate clinical translation.


Assuntos
Tendões , Engenharia Tecidual , Tendões/fisiologia
17.
J Biomech ; 148: 111476, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36753854

RESUMO

A common pitfall of existing Science, Technology, Engineering, and Math (STEM) outreach programs is that they preferentially engage youth with a preexisting interest in STEM. Biomechanics has the unique potential to broaden access to STEM enrichment due to its direct applicability to sports and human performance. In this study we examine whether biomechanics within youth sports can be used as a venue for STEM outreach, and whether recruiting participants through youth sports programs could broaden access to the STEM pipeline. We created a four-hour sports science clinic that was performed as part of National Biomechanics Day and invited two groups of student participants: youth recruited through local high school sports programs ("Sports Cohort", N = 80) and youth recruited through existing STEM enrichment programs ("STEM Cohort", N = 31). We evaluated interest in STEM, Sports Science, and Sports using a pre-post survey. Somewhat expectedly, youth recruited through sports programs (Sports Cohort) had a lower baseline interest in STEM and a higher baseline interest in sports, compared to those recruited through STEM programs (STEM Cohort). The Sports Cohort exhibited a statistically significant increase in STEM interest following participation in the clinic, while youth in the STEM Cohort maintained their high baseline of STEM interest. These findings provide evidence that youth sports programs can serve as an attractive partner for biomechanists engaged in STEM outreach, and that situating STEM within sports through biomechanical analysis has potential to introduce STEM interest to a wider audience and to broaden access to the STEM fields among diverse youth.


Assuntos
Esportes , Esportes Juvenis , Adolescente , Humanos , Fenômenos Biomecânicos , Engenharia , Tecnologia
18.
ACS Omega ; 8(16): 14610-14620, 2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37125141

RESUMO

Surfactin, a negatively charged amphiphilic lipopeptide biosurfactant, is synthesized by the bacterium Bacillus subtilis. It consists of a cyclic heptapeptide and an 11-15C ß-hydroxy fatty acid. To probe how the modification of the molecular skeleton of surfactin influences its selectivity and activity against breast cancer, six synthetic surfactins were generated. Modifications were accomplished by conjugating amine-functionalized molecules to the Glu and Asp carboxyl moieties of the heptapeptide. The resulting synthetic surfactins provided a diverse series of molecules with differences in charge, size, and hydrophilicity. After purification and structural analysis, insights into biological activity and specificity were generated for each compound. Dose-dependent growth inhibition was determined for four tumorigenic breast cancer cell lines in monolayer and spheroid morphologies, as well as nontumorigenic fibroblasts and sheep erythrocytes, which were utilized to determine selectivity indices. Results indicated that two compounds, which have amplified anionic charge, had increased activity on breast cancer, with reduced activity on nontumorigenic fibroblasts and erythrocytes. Cationic derivative surf-ethylenediamine has increased activity on all cell lines tested. Novel correlations between dose-response activities and physicochemical properties of all compounds determined that there is a significant correlation between the critical micelle concentration and activity against multiple cell lines.

19.
J Vis Exp ; (184)2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35815980

RESUMO

Multicellular tumor spheroid (MCTSs) models have demonstrated increasing utility for in vitro study of cancer progression and drug discovery. These relatively simple avascular constructs mimic key aspects of in vivo tumors, such as 3D structure and pathophysiological gradients. MCTSs models can provide insights into cancer cell behavior during spheroid development and in response to drugs; however, their requisite size drastically limits the tools used for non-destructive assessment. Optical Coherence Tomography structural imaging and Imaris 3D analysis software are explored for rapid, non-destructive, and label-free measurement of regional cell density within MCTSs. This approach is utilized to assess MCTSs over a 4-day maturation period and throughout an extended 5-day treatment with Trastuzumab, a clinically relevant anti-HER2 drug. Briefly, AU565 HER2+ breast cancer MCTSs were created via liquid overlay with or without the addition of Matrigel (a basement membrane matrix) to explore aggregates of different morphologies (thicker, disk-like 2.5D aggregates or flat 2D aggregates, respectively). Cell density within the outer region, transitional region, and inner core was characterized in matured MCTSs, revealing a cell-density gradient with higher cell densities in core regions compared to outer layers. The matrix addition redistributed cell density and enhanced this gradient, decreasing outer zone density and increasing cell compaction in the cores. Cell density was quantified following drug treatment (0 h, 24 h, 5 days) within progressively deeper 100 µm zones to assess potential regional differences in drug response. By the final timepoint, nearly all cell death appeared to be constrained to the outer 200 µm of each aggregate, while cells deeper in the aggregate appeared largely unaffected, illustrating regional differences in the drug response, possibly due to limitations in drug penetration. The current protocol provides a unique technique to non-destructively quantify regional cell density within dense cellular tissues and measure it longitudinally.


Assuntos
Neoplasias da Mama , Esferoides Celulares , Neoplasias da Mama/tratamento farmacológico , Contagem de Células , Linhagem Celular Tumoral , Descoberta de Drogas , Feminino , Humanos
20.
J Biomech Eng ; 133(5): 054501, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21599101

RESUMO

Reproduction of the in vivo motions of joints has become possible with improvements in robot technology and in vivo measuring techniques. A motion analysis system has been used to measure the motions of the tibia and femur of the ovine stifle joint during normal gait. These in vivo motions are then reproduced with a parallel robot. To ensure that the motion of the joint is accurately reproduced and that the resulting data are reliable, the testing frame, the data acquisition system, and the effects of limitations of the testing platform need to be considered. Of the latter, the stiffness of the robot and the ability of the control system to process sequential points on the path of motion in a timely fashion for repeatable path accuracy are of particular importance. Use of the system developed will lead to a better understanding of the mechanical environment of joints and ligaments in vivo.


Assuntos
Ligamento Cruzado Anterior/fisiologia , Marcha/fisiologia , Articulação do Joelho/fisiologia , Robótica/instrumentação , Joelho de Quadrúpedes/fisiologia , Animais , Fenômenos Biomecânicos , Fêmur/fisiologia , Ligamentos/fisiologia , Movimento (Física) , Movimento/fisiologia , Amplitude de Movimento Articular/fisiologia , Ovinos , Tíbia/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA