Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Assunto principal
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Opt Lett ; 49(2): 178-181, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38194522

RESUMO

We demonstrate experimentally high-speed ptychographic imaging of non-repetitive complex-valued events. Three time-resolved complex-valued frames are reconstructed from data recorded in a single camera snapshot. The temporal resolution of the microscope is determined by delays between illuminating pulses. The ability to image amplitude and phase of nonrepetitive events with ultrafast temporal resolution will open new opportunities in science and technology.

2.
Opt Express ; 31(9): 14343-14357, 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37157300

RESUMO

Imaging through scattering media is a useful and yet demanding task since it involves solving for an inverse mapping from speckle images to object images. It becomes even more challenging when the scattering medium undergoes dynamic changes. Various approaches have been proposed in recent years. However, none of them are able to preserve high image quality without either assuming a finite number of sources for dynamic changes, assuming a thin scattering medium, or requiring access to both ends of the medium. In this paper, we propose an adaptive inverse mapping (AIP) method, which requires no prior knowledge of the dynamic change and only needs output speckle images after initialization. We show that the inverse mapping can be corrected through unsupervised learning if the output speckle images are followed closely. We test the AIP method on two numerical simulations: a dynamic scattering system formulated as an evolving transmission matrix and a telescope with a changing random phase mask at a defocused plane. Then we experimentally apply the AIP method to a multimode-fiber-based imaging system with a changing fiber configuration. Increased robustness in imaging is observed in all three cases. AIP method's high imaging performance demonstrates great potential in imaging through dynamic scattering media.

3.
Opt Express ; 26(19): 24357-24371, 2018 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-30469556

RESUMO

In this work, we numerically investigate an experimentally feasible design of a tapered Ne-filled hollow-core anti-resonant fiber and we report multi-stage generation of dispersive waves (DWs) in the range 90-120 nm, well into the extreme ultraviolet (UV) region. The simulations assume a 800 nm pump pulse with 30 fs 10 µJ pulse energy, launched into a 9 bar Ne-filled fiber with a 34 µm initial core diameter that is then tapered to a 10 µm core diameter. The simulations were performed using a new model that provides a realistic description of both loss and dispersion of the resonant and anti-resonant spectral bands of the fiber, and also importantly includes the material loss of silica in the UV. We show that by first generating solitons that emit DWs in the far-UV region in the pre-taper section, optimization of the following taper structure can allow re-collision with the solitons and further up-conversion of the far-UV DWs to the extreme-UV with energies up to 190 nJ in the 90-120 nm range. This process provides a new way to generate light in the extreme-UV spectral range using relatively low gas pressure.

4.
Opt Express ; 26(23): 30042-30051, 2018 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-30469884

RESUMO

Optical vortex beams that carry orbital angular momentum (OAM), also known as OAM modes, have attracted considerable interest in recent years as they can comprise an additional degree of freedom for a variety of advanced classical and quantum optical applications. While canonical methods of OAM mode generation are effective, a method that can simultaneously generate and multiplex OAM modes with low loss and over broad spectral range is still in great demand. Here, via novel design of an optical fiber device referred to as a photonic lantern, where the radial mode index ("m") is neglected, for the first time we demonstrate the simultaneous generation and multiplexing of OAM modes with low loss and over the broadest spectral range to date (550 nm). We further confirm the potential of this approach to preserve the quality of studied OAM modes by fusion splicing the end-facet of the fabricated device to a delivery ring-core fiber (RCF).

5.
Opt Express ; 26(10): 13390-13396, 2018 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-29801363

RESUMO

We propose a novel triple-clad photonic lanterns for mode scaling. This novel structure alleviates the adiabatic tapering requirement for the fabrication of large photonic lanterns. A 10-mode photonic lantern with insertion losses ranging from 0.6 to 2.0 dB across all the modes and a record-low pairwise 4-dB mode-dependent loss at C-band was demonstrated.

6.
Light Sci Appl ; 12(1): 125, 2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37221183

RESUMO

Recent years have witnessed the tremendous development of fusing fiber-optic imaging with supervised deep learning to enable high-quality imaging of hard-to-reach areas. Nevertheless, the supervised deep learning method imposes strict constraints on fiber-optic imaging systems, where the input objects and the fiber outputs have to be collected in pairs. To unleash the full potential of fiber-optic imaging, unsupervised image reconstruction is in demand. Unfortunately, neither optical fiber bundles nor multimode fibers can achieve a point-to-point transmission of the object with a high sampling density, as is a prerequisite for unsupervised image reconstruction. The recently proposed disordered fibers offer a new solution based on the transverse Anderson localization. Here, we demonstrate unsupervised full-color imaging with a cellular resolution through a meter-long disordered fiber in both transmission and reflection modes. The unsupervised image reconstruction consists of two stages. In the first stage, we perform a pixel-wise standardization on the fiber outputs using the statistics of the objects. In the second stage, we recover the fine details of the reconstructions through a generative adversarial network. Unsupervised image reconstruction does not need paired images, enabling a much more flexible calibration under various conditions. Our new solution achieves full-color high-fidelity cell imaging within a working distance of at least 4 mm by only collecting the fiber outputs after an initial calibration. High imaging robustness is also demonstrated when the disordered fiber is bent with a central angle of 60°. Moreover, the cross-domain generality on unseen objects is shown to be enhanced with a diversified object set.

8.
Opt Express ; 17(11): 9006-12, 2009 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-19466150

RESUMO

A scalable and accurate technique for measuring the group index and dispersion of optical fibers is used to provide the first accurate measurements of dispersion slope in hollow-core photonic band-gap fibers. We present data showing group index, group-velocity dispersion and dispersion slope in hollow-core fibers guiding at both 800 nm and 1064 nm wavelength.


Assuntos
Fibras Ópticas , Desenho Assistido por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Reprodutibilidade dos Testes , Espalhamento de Radiação , Sensibilidade e Especificidade
9.
Sci Rep ; 9(1): 16247, 2019 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-31700078

RESUMO

Leveraging recent advances in space-division multiplexing, we propose and demonstrate turbulence-resistant free-space optical communication using few-mode (FM) pre-amplified receivers. The rationale for this approach is that a distorted wavefront can be decomposed into a superposition of the fundamental Gaussian mode and high-order modes of a few-mode fiber. We present the noise statistics and the sensitivity of the FM pre-amplified receiver, followed by experimental and numerical comparisons between FM pre-amplified receivers and single-mode (SM) pre-amplified receivers with or without adaptive optics. FM pre-amplified receivers for FSO can achieve high sensitivity, simplicity and reliability.

10.
Sci Rep ; 8(1): 3882, 2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29497048

RESUMO

Despite the promise of an orders-of-magnitude increase in transmission capacity, practical implementation of mode-division multiplexing faces a number of challenges. The most important among them is the complexity of digital signal processing (DSP) for compensating mode crosstalk and modal dispersion. The most promising method proposed so far for reducing this DSP complexity is strong mode coupling. We propose and demonstrate, for the first time, a method of inducing strong mode coupling and reducing group delay spread using uniform long-period gratings (LPGs). Even though the LPGs have a fixed grating period, mode coupling is effective among all mode groups and over a broad wavelength range. Both insertion loss and mode-dependent loss can be significantly reduced by optimizing the index profile of and the number of modes supported by the fiber in which the LPG is applied.

11.
Sci Rep ; 8(1): 3065, 2018 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29449605

RESUMO

We present a randomly disordered silica-air optical fiber featuring a 28.5% air filling fraction in the structured region, and low attenuation below 1 dB per meter at visible wavelengths. The quality of images transported through this fiber is shown to be comparable to, or even better than, that of images sent through commercial multicore imaging fiber. We demonstrate robust high-quality optical image transfer through 90 cm-long fibers with disordered silica-air structure, more than an order of magnitude improvement compared to previous disordered fiber imaging distances. The effects of variations of wavelength and feature size on transported image quality are investigated experimentally.

12.
Light Sci Appl ; 6(8): e17021, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30167277

RESUMO

The fibre-optic microwave photonic link has become one of the basic building blocks for microwave photonics. Increasing the optical power at the receiver is the best way to improve all link performance metrics including gain, noise figure and dynamic range. Even though lasers can produce and photodetectors can receive optical powers on the order of a Watt or more, the power-handling capability of optical fibres is orders-of-magnitude lower. In this paper, we propose and demonstrate the use of few-mode fibres to bridge this power-handling gap, exploiting their unique features of small acousto-optic effective area, large effective areas of optical modes, as well as orthogonality and walk-off among spatial modes. Using specially designed few-mode fibres, we demonstrate order-of-magnitude improvements in link performances for single-channel and multiplexed transmission. This work represents the first step in few-mode microwave photonics. The spatial degrees of freedom can also offer other functionalities such as large, tunable delays based on modal dispersion and wavelength-independent lossless signal combining, which are indispensable in microwave photonics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA