Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Environ Res ; 160: 306-313, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29040950

RESUMO

The growing human population concentrated in urban areas lead to the increase of road traffic and artificial areas, consequently enhancing air pollution and urban heat island effects, among others. These environmental changes affect citizen's health, causing a high number of premature deaths, with considerable social and economic costs. Nature-based solutions are essential to ameliorate those impacts in urban areas. While the mere presence of urban green spaces is pointed as an overarching solution, the relative importance of specific vegetation structure, composition and management to improve the ecosystem services of air purification and climate regulation are overlooked. This avoids the establishment of optimized planning and management procedures for urban green spaces with high spatial resolution and detail. Our aim was to understand the relative contribution of vegetation structure, composition and management for the provision of ecosystem services of air purification and climate regulation in urban green spaces, in particular the case of urban parks. This work was done in a large urban park with different types of vegetation surrounded by urban areas. As indicators of microclimatic effects and of air pollution levels we selected different metrics: lichen diversity and pollutants accumulation in lichens. Among lichen diversity, functional traits related to nutrient and water requirements were used as surrogates of the capacity of vegetation to filter air pollution and to regulate climate, and provide air purification and climate regulation ecosystem services, respectively. This was also obtained with very high spatial resolution which allows detailed spatial planning for optimization of ecosystem services. We found that vegetation type characterized by a more complex structure (trees, shrubs and herbaceous layers) and by the absence of management (pruning, irrigation and fertilization) had a higher capacity to provide the ecosystems services of air purification and climate regulation. By contrast, lawns, which have a less complex structure and are highly managed, were associated to a lower capacity to provide these services. Tree plantations showed an intermediate effect between the other two types of vegetation. Thus, vegetation structure, composition and management are important to optimize green spaces capacity to purify air and regulate climate. Taking this into account green spaces can be managed at high spatial resolutions to optimize these ecosystem services in urban areas and contribute to improve human well-being.


Assuntos
Poluição do Ar , Cidades , Clima , Líquens , Parques Recreativos , Ecossistema
2.
Environ Res ; 160: 469-478, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29078140

RESUMO

Urban areas' population has grown during the last century and it is expected that over 60% of the world population will live in cities by 2050. Urban parks provide several ecosystem services that are valuable to the well-being of city-dwellers and they are also considered a nature-based solution to tackle multiple environmental problems in cities. However, the type and amount of ecosystem services provided will vary with each park vegetation type, even within same the park. Our main goal was to quantify the trade-offs in ecosystem services associated to different vegetation types, using a spatially detailed approach. Rather than relying solely on general vegetation typologies, we took a more ecologically oriented approach, by explicitly considering different units of vegetation structure and composition. This was demonstrated in a large park (44ha) located in the city of Almada (Lisbon metropolitan area, Portugal), where six vegetation units were mapped in detail and six ecosystem services were evaluated: carbon sequestration, seed dispersal, erosion prevention, water purification, air purification and habitat quality. The results showed that, when looking at the park in detail, some ecosystem services varied greatly with vegetation type. Carbon sequestration was positively influenced by tree density, independently of species composition. Seed dispersal potential was higher in lawns, and mixed forest provided the highest amount of habitat quality. Air purification service was slightly higher in mixed forest, but was high in all vegetation types, probably due to low background pollution, and both water purification and erosion prevention were high in all vegetation types. Knowing the type, location, and amount of ecosystem services provided by each vegetation type can help to improve management options based on ecosystem services trade-offs and looking for win-win situations. The trade-offs are, for example, very clear for carbon: tree planting will boost carbon sequestration regardless of species, but may not be enough to increase habitat quality. Moreover, it may also negatively influence seed dispersal service. Informed practitioners can use this ecological knowledge to promote the role of urban parks as a nature-based solution to provide multiple ecosystem services, and ultimately improve the design and management of the green infrastructure. This will also improve the science of Ecosystem Services, acknowledging that the type of vegetation matters for the provision of ecosystem services and trade-offs analysis.


Assuntos
Conservação dos Recursos Naturais/economia , Ecossistema , Parques Recreativos/estatística & dados numéricos , Cidades , Florestas , Portugal , Árvores/crescimento & desenvolvimento
3.
Ann Bot ; 119(7): 1157-1167, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28334085

RESUMO

Background and Aims: The geographical distributions of species are constrained by their ecological requirements. The aim of this work was to analyse the effects of environmental conditions, historical events and biogeographical constraints on the diversification of the three species of the western Mediterranean shrub genus Stauracanthus , which have a parapatric distribution in the Iberian Peninsula. Methods: Ecological niche factor analysis and generalized linear models were used to measure the response of all Stauracanthus species to the environmental gradients and map their potential distributions in the Iberian Peninsula. The bioclimatic niche overlap between the three species was determined by using Schoener's index. The genetic differentiation of the Iberian and northern African populations of Stauracanthus species was characterized with GenalEx. The effects on genetic distances of the most important environmental drivers were assessed through Mantel tests and non-metric multidimensional scaling. Key Results: The three Stauracanthus species show remarkably similar responses to climatic conditions. This supports the idea that all members of this recently diversified clade retain common adaptations to climate and consequently high levels of climatic niche overlap. This contrasts with the diverse edaphic requirements of Stauracanthus species. The populations of the S. genistoides-spectabilis clade grow on Miocene and Pliocene fine-textured sedimentary soils, whereas S. boivinii , the more genetically distant species, occurs on older and more coarse-textured sedimentary substrates. These patterns of diversification are largely consistent with a stochastic process of geographical range expansion and fragmentation coupled with niche evolution in the context of spatially complex environmental fluctuations. Conclusions: : The combined analysis of the distribution, realized environmental niche and phylogeographical relationships of parapatric species proposed in this work allows integration of the biogeographical, ecological and evolutionary processes driving the evolution of species adaptations and how they determine their current geographical ranges.


Assuntos
Clima , Ecossistema , Fabaceae/classificação , Ecologia , Fabaceae/fisiologia , Filogenia , Filogeografia , Espanha
4.
Environ Res ; 147: 601-10, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26777032

RESUMO

Forested areas within cities host a large number of species, responsible for many ecosystem services in urban areas. The biodiversity in these areas is influenced by human disturbances such as atmospheric pollution and urban heat island effect. To ameliorate the effects of these factors, an increase in urban green areas is often considered sufficient. However, this approach assumes that all types of green cover have the same importance for species. Our aim was to show that not all forested green areas are equal in importance for species, but that based on a multi-taxa and functional diversity approach it is possible to value green infrastructure in urban environments. After evaluating the diversity of lichens, butterflies and other-arthropods, birds and mammals in 31 Mediterranean urban forests in south-west Europe (Almada, Portugal), bird and lichen functional groups responsive to urbanization were found. A community shift (tolerant species replacing sensitive ones) along the urbanization gradient was found, and this must be considered when using these groups as indicators of the effect of urbanization. Bird and lichen functional groups were then analyzed together with the characteristics of the forests and their surroundings. Our results showed that, contrary to previous assumptions, vegetation density and more importantly the amount of urban areas around the forest (matrix), are more important for biodiversity than forest quantity alone. This indicated that not all types of forested green areas have the same importance for biodiversity. An index of forest functional diversity was then calculated for all sampled forests of the area. This could help decision-makers to improve the management of urban green infrastructures with the goal of increasing functionality and ultimately ecosystem services in urban areas.


Assuntos
Biodiversidade , Aves , Borboletas , Líquens , Urbanização , Animais , Cidades/estatística & dados numéricos , Florestas , Mamíferos , Região do Mediterrâneo
5.
Ecol Evol ; 13(2): e9828, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36818530

RESUMO

Species' environmental requirements and large-scale spatial and evolutionary processes determine the structure and composition of local communities. However, ecological interactions also have major effects on community assembly at landscape and local scales. We evaluate whether two xerophytic shrub communities occurring in SW Portugal follow constrained ecological assembly dynamics throughout large geographical extents, or their composition is rather driven by species' individualistic responses to environmental and macroecological constraints. Inland dune xerophytic shrub communities were characterized in 95 plots. Then, we described the main gradients of vegetation composition and assessed the relevance of biotic interactions. We also characterized the habitat suitability of the dominant species, Stauracanthus genistoides, and Ulex australis, to map the potential distribution of the xerophytic shrub communities. Finally, we examined the relationships between the vegetation gradients and a broad set of explanatory variables to identify the relative importance of each factor driving changes in community composition. We found that xerophytic shrubs follow uniform successional patterns throughout the whole geographical area studied, but each community responds differently to the main environmental gradients in each region. Soil organic matter is the main determinant of community variations in the northern region, Setúbal Peninsula, whereas aridity is so in the South/South-Western region. In contrast, in the central region, Comporta, the variation between S. genistoides and U. australis communities is explained mainly by aridity and temperature seasonality, followed by the individualistic responses of the dominant species and soil organic matter. Overall, these results indicate that, the relative importance of the main factors causing community-level responses varies according to regional processes and the suitability of the environmental conditions for the dominant species in these communities. These responses are also determined by intrinsic community mechanisms that result in a high degree of similarity in the gradient-driven community stages in different regions.

6.
Front Plant Sci ; 13: 841707, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35360314

RESUMO

The pinewood nematode (PWN), Bursaphelenchus xylophilus, responsible for the pine wilt disease (PWD), is a major threat to pine forests worldwide. Since forest mortality due to PWN might be exacerbated by climate, the concerns regarding PWD in the Mediterranean region are further emphasized by the projected scenarios of more drought events and higher temperatures. In this context, it is essential to better understand the pine species vulnerability to PWN under these conditions. To achieve that, physiological responses and wilting symptoms were monitored in artificially inoculated Pinus pinaster (P. pinaster), Pinus pinea (P. pinea), and Pinus radiata (P. radiata) saplings under controlled temperature (25/30°C) and water availability (watered/water stressed). The results obtained showed that the impact of PWN is species-dependent, being infected P. pinaster and P. radiata more prone to physiological and morphological damage than P. pinea. For the more susceptible species (P. pinaster and P. radiata), the presence of the nematode was the main driver of photosynthetic responses, regardless of their temperature or water regime conditions. Nevertheless, water potential was revealed to be highly affected by the synergy of PWN and the studied abiotic conditions, with higher temperatures (P. pinaster) or water limitation (P. radiata) increasing the impact of nematodes on trees' water status. Furthermore, water limitation had an influence on nematodes density and its allocation on trees' structures, with P. pinaster revealing the highest nematode abundance and inner dispersion. In inoculated P. pinea individuals, nematodes' population decreased significantly, emphasizing this species resistance to PWN. Our findings revealed a synergistic impact of PWN infection and stressful environmental conditions, particularly on the water status of P. pinaster and P. radiata, triggering disease symptoms and mortality of these species. Our results suggest that predicted drought conditions might facilitate proliferation and exacerbate the impact of PWN on these two species, through xylem cavitation, leading to strong changes in pine forests of the Mediterranean regions.

7.
Sci Total Environ ; 657: 310-318, 2019 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-30543980

RESUMO

Shrub encroachment influences several ecosystem services in drylands worldwide. Yet, commonly used strategies to reduce encroachment show a low medium-term success, calling for a better understanding of its causes. Previous works identified multiple drivers responsible for this phenomenon, including anthropogenic and environmental causes. However, the relative effect of climate, topography and edaphic factors on shrub encroachment is not fully understood nor has been properly quantified in Mediterranean Basin drylands. Also, understanding how these drivers lead to changes in plant communities' functional traits associated to shrub encroachment is crucial, considering traits influence ecosystem processes and associated ecosystem services. Here, we studied the understory of a Mediterranean dryland ecosystem composed of savanna-like Holm-oak woodlands, along a regional climatic gradient. We specifically assessed (i) how climatic, topographic and edaphic factors influence understory relative shrub cover (RSC) and (ii) their direct and indirect effects (via RSC) on plant functional traits. We studied the mean and diversity of 12 functional traits related to plant regeneration, establishment, and dispersal, at the community-level. We found that, under similar low-intensity land use, topographic and edaphic factors, namely slope variations and soil C:N ratio, were the most important predictors of shrub encroachment, determining communities' functional characteristics. Climate, namely summer precipitation, had a much lesser influence. Our model explained 52% of the variation in relative shrub cover. Climate had a stronger effect on a set of functional traits weakly involved in shrub encroachment, related to flowering and dispersal strategies. We show that shrub encroachment is largely predicted by topo-edaphic factors in Mediterranean drylands subject to conventional low-intensity land use. Hence, management strategies to reduce encroachment need to take these drivers into account for efficient forecasting and higher cost-effectiveness. Our results suggest that climate change might not greatly impact shrub encroachment in the Mediterranean Basin, but may affect functional structure and reduce functional diversity of plant communities, thus affecting ecosystem functioning.


Assuntos
Mudança Climática , Ecossistema , Dispersão Vegetal , Geografia , Portugal , Solo/química
8.
Artigo em Inglês | MEDLINE | ID: mdl-30991765

RESUMO

The impact of allergens emitted by urban green spaces on health is one of the main disservices of ecosystems. The objective of this work is to establish the potential allergenic value of some tree species in urban environments, so that the allergenicity of green spaces can be estimated through application of the Index of Urban Green Zones Allergenicity (IUGZA). Multiple types of green spaces in Mediterranean cities were selected for the estimation of IUGZ. The results show that some of the ornamental species native to the Mediterranean are among the main causative agents of allergy in the population; in particular, Oleaceae, Cupressaceae, Fagaceae, and Platanus hispanica. Variables of the strongest impact on IUGZA were the bioclimatic characteristics of the territory and design aspects, such as the density of trees and the number of species. We concluded that the methodology to assess the allergenicity associated with urban trees and urban areas presented in this work opens new perspectives in the design and planning of urban green spaces, pointing out the need to consider the potential allergenicity of a species when selecting plant material to be used in cities. Only then can urban green areas be inclusive spaces, in terms of public health.


Assuntos
Alérgenos/análise , Planejamento Ambiental , Hipersensibilidade/prevenção & controle , Parques Recreativos , Saúde Pública , Árvores , Cidades , França , Itália , Marrocos , Parques Recreativos/normas , Pólen , Portugal , Eslovênia , Espanha
9.
Environ Pollut ; 151(2): 292-9, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17664032

RESUMO

The objective of this work was to evaluate the spatial and temporal impact of dust-pollution in the vicinity of a cement industry, located in an area with dry climate. The spatial impact integrated over time was evaluated from the concentrations of Ca, Fe and Mg in in-situ Xanthoria parietina. The temporal pattern was assessed through one-month transplants of the lichen Ramalina canariensis. Four potential sources of atmospheric dust were evaluated: the limestone-quarry; the unpaved roads, the deposit area and the cement mill. Calcium concentration in lichens was considered the best cement-dust indicator. Different types of dust (clinker and grinded-limestone-dust) resulted in different time-patterns of Ca accumulation, which was also related with the different influence that wet and dry periods have in the lichen accumulation process. The dust pollution was found to be deposited locally and dependent on: the nature of dust particles and the volume and frequency of precipitation.


Assuntos
Poluentes Ocupacionais do Ar/análise , Cálcio/análise , Materiais de Construção , Poeira , Monitoramento Ambiental/métodos , Indústrias Extrativas e de Processamento , Carbonato de Cálcio , Exposição por Inalação , Ferro/análise , Líquens/química , Magnésio/análise , Exposição Ocupacional , Tamanho da Partícula , Portugal , Chuva , Tempo
10.
Sci Total Environ ; 566-567: 722-732, 2016 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-27239715

RESUMO

Restoration efforts in the Mediterranean Basin have been changing from a silvicultural to an ecological restoration approach. Yet, to what extent the projects are guided by ecological restoration principles remains largely unknown. To analyse this issue, we built an on-line survey addressed to restoration practitioners. We analysed 36 restoration projects, mostly from drylands (86%). The projects used mainly soil from local sources. The need to comply with legislation was more important as a restoration motive for European Union (EU) than for non-EU countries, while public opinion and health had a greater importance in the latter. Non-EU countries relied more on non-native plant species than EU countries, thus deviating from ecological restoration guidelines. Nursery-grown plants used were mostly of local or regional provenance, whilst seeds were mostly of national provenance. Unexpected restoration results (e.g. inadequate biodiversity) were reported for 50% of the projects and restoration success was never evaluated in 22%. Long term evaluation (>6years) was only performed in 31% of cases, and based primarily on plant diversity and cover. The use of non-native species and species of exogenous provenances may: i) entail the loss of local genetic and functional trait diversity, critical to cope with drought, particularly under the predicted climate change scenarios, and ii) lead to unexpected competition with native species and/or negatively impact local biotic interactions. Absent or inappropriate monitoring may prevent the understanding of restoration trajectories, precluding adaptive management strategies, often crucial to create functional ecosystems able to provide ecosystem services. The overview of ecological restoration projects in the Mediterranean Basin revealed high variability among practices and highlighted the need for improved scientific assistance and information exchange, greater use of native species of local provenance, and more long-term monitoring and evaluation, including functional and ecosystem services' indicators, to improve and spread the practice of ecological restoration.


Assuntos
Biota , Recuperação e Remediação Ambiental/normas , Plantas/classificação , Solo/química , África do Norte , Região do Mediterrâneo , Oriente Médio
11.
PLoS One ; 9(1): e86001, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24465833

RESUMO

Landscapes are often patchworks of private properties, where composition and configuration patterns result from cumulative effects of the actions of multiple landowners. Securing the delivery of services in such multi-ownership landscapes is challenging, because it is difficult to assure tight compliance to spatially explicit management rules at the level of individual properties, which may hinder the conservation of critical landscape features. To deal with these constraints, a multi-objective simulation-optimization procedure was developed to select non-spatial management regimes that best meet landscape-level objectives, while accounting for uncoordinated and uncertain response of individual landowners to management rules. Optimization approximates the non-dominated Pareto frontier, combining a multi-objective genetic algorithm and a simulator that forecasts trends in landscape pattern as a function of management rules implemented annually by individual landowners. The procedure was demonstrated with a case study for the optimum scheduling of fuel treatments in cork oak forest landscapes, involving six objectives related to reducing management costs (1), reducing fire risk (3), and protecting biodiversity associated with mid- and late-successional understories (2). There was a trade-off between cost, fire risk and biodiversity objectives, that could be minimized by selecting management regimes involving ca. 60% of landowners clearing the understory at short intervals (around 5 years), and the remaining managing at long intervals (ca. 75 years) or not managing. The optimal management regimes produces a mosaic landscape dominated by stands with herbaceous and low shrub understories, but also with a satisfactory representation of old understories, that was favorable in terms of both fire risk and biodiversity. The simulation-optimization procedure presented can be extended to incorporate a wide range of landscape dynamic processes, management rules and quantifiable objectives. It may thus be adapted to other socio-ecological systems, particularly where specific patterns of landscape heterogeneity are to be maintained despite imperfect management by multiple landowners.


Assuntos
Conservação dos Recursos Naturais , Propriedade , Árvores , Simulação por Computador
12.
Funct Plant Biol ; 29(8): 999-1011, 2002 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32689550

RESUMO

To analyse characteristic patterns of dynamic and chronic photoinhibition within a plant community, a new technique is proposed, which is based on the long- and short-term recovery time of maximum photochemical efficiency of PSII (F v/F m) after environmental stress. Chronic photoinhibition was determined as a sustainable decrease in predawn F v/F m, occurring during periods of prolonged stress, whereas dynamic photoinhibition was assessed from the fully reversible diurnal decline in F v/F m. Applied to a Mediterranean macchia ecosystem, this definition allowed the characterization of typical annual patterns of chronic and dynamic photoinhibition. Both types of photoinhibition were highest during summer drought. However, differences emerged among the ten dominant macchia species regarding their susceptibility to chronic photoinhibition during different seasons. Chronic and dynamic photoinhibition were dependent on leaf orientation. Semi-deciduous species avoided enhanced chronic photoinhibition through a reduction of excessive light interception by vertical foliage orientation during summer, whereas evergreen sclerophylls did not exhibit pronounced structural photoprotective mechanisms. Chronic and total photoinhibition were significantly correlated with predawn and midday water potentials, respectively, and a grouping of the macchia species into three functional groups is proposed according to this relationship.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA