RESUMO
The amount of the four caseins (αs1, αs2, ß and κ-CN) in donkey milk was evaluated by Urea-PAGE analysis at pH 8.6, followed by immuno-detection with polyclonal antibodies, coupled to densitometric analysis. The results showed the percentage of each casein in decreasing order: ß (54.28) > αs1 (35.59) > αs2 (7.19) > κ-CN (2.79). The mRNA quantification of donkey casein transcripts, carried out by RT-qPCR, showed that the average percentage of corresponding gene transcripts (CSN2, CSN1S1, CSN1S2 I and CSN3) was 70.85, 6.28, 14.23 and 8.65, respectively. The observed translation efficiency, assessed as percentage of single milk casein fraction out of single percentage of transcript, was 0.76, 5.66, 0.50 and 0.32, respectively. The analysis of the sequences flanking the start codon, the codon usage frequencies and the coding sequence length might explain, at least in part, the differential transcriptional and translational rate observed among the casein transcripts.
Assuntos
Caseínas/química , Equidae , Leite/química , Animais , Caseínas/metabolismo , Feminino , Proteínas do Leite/química , Proteínas do Leite/metabolismo , Nitrogênio/químicaRESUMO
OBJECTIVE: Aim of present study was the set up of a fast and reliable protocol using species-specific markers for the quali-quantitative analysis of DNA and the detection of ruminant biological components in dairy products. For this purpose, the promoter of the gene coding for the α-lactoalbumin (LALBA) was chosen as possible candidate for the presence of short interspersed nuclear elements (SINEs). METHODS: DNA was isolated from somatic cells of 120 individual milk samples of cattle (30), Mediterranean river buffalo (30), goat (30), and sheep (30) and the gene promoter region (about 600/700 bp) of LALBA (from about 600 bp upstream of exon 1) has been sequenced. For the development of a single polymerase chain reaction (PCR) protocol that allows the simultaneous identification of DNA from the four species of ruminants, the following internal primers pair were used: 5'-CACTGATCTTAAAGCTCAGGTT-3' (forward) and 5'-TCAGA GTAGGCCACAGAAG-3' (reverse). RESULTS: Sequencing results of LALBA gene promoter region confirmed the presence of SINEs as monomorphic "within" and variable in size "among" the selected species. Amplicon lengths were 582 bp in cattle, 592 bp in buffalo, 655 in goat and 729 bp in sheep. PCR specificity was demonstrated by the detection of trace amounts of species-specific DNA from mixed sources (0.25 ng/µL). CONCLUSION: We developed a rapid PCR protocol for the quali-quantitative analysis of DNA and the traceability of dairy products using a species-specific marker with only one pair of primers. Our results validate the proposed technique as a suitable tool for a simple and inexpensive (economic) detection of animal origin components in foodstuffs.
RESUMO
In this research communication we exploited the potential use of milk microRNAs (miRs) as biomarkers for bovine tuberculosis (bTB). bTB is a zoonotic disease caused by Mycobacterium bovis which affects animal health, influencing herd economic sustainability. Diagnosis is based on skin delayed-type hypersensitivity reaction and quantification of interferon gamma but both techniques are influenced by several confounding factors. Thus, new methods for early diagnosis are required. In this context, microRNAs have been used as promising biomarkers for both infectious and non-infectious diseases. To determine the possible involvement of microRNAs in bTB, we analysed the expression of four immune-related miRs in 200 cows grouped in cases and controls with respect to positivity to tuberculosis. The analysis showed a different magnitude of expression in the groups indicating that active tuberculosis could influence miRs expression. We used expression values of miR-146a, the highest differentially expressed miR, for Receiver operating characteristic (ROC) curve analysis. In order to determine a test cut-off value for miR-146a expression that would differentiate cases and controls, a value for the miR-146a expression higher than 8 was selected as this gave a test specificity and sensitivity of 80·0% and 86·0% respectively. These values confirm the possibility of using miR-146a as a milk prognostic biomarker for bovine tuberculosis.
Assuntos
Biomarcadores/análise , MicroRNAs/análise , Tuberculose Bovina/diagnóstico , Animais , Bovinos , Diagnóstico Precoce , Feminino , Leite/química , Prognóstico , Curva ROC , Sensibilidade e EspecificidadeRESUMO
The oxytocin receptor, also known as OXTR, is a protein which functions as receptor for the hormone and neurotransmitter oxytocin and the complex oxytocin-oxytocin receptor plays an important role in the uterus during calving. A characterisation of the river buffalo OXTR gene, amino acid sequences and phylogenetic analysis is presented. The DNA regions of the OXTR gene spanning exons 1, 2 and 3 of ten Mediterranean river buffalo DNA samples were analysed and 7 single nucleotide polymorphisms were found. We focused on the g.129C > T SNP detected in exon 3 and responsible for the amino acid replacement CGCArg > TGCCys in position 353. The relative frequency of T allele was of 0·257. An association study between this detected polymorphism and milk fatty acids composition in Italian Mediterranean river buffalo was carried out. The fatty acid composition traits, fatty acid classes and fat percentage of 306 individual milk samples were determined. Associations between OXTR g.129C > T genotype and milk fatty acids composition were tested using a mixed linear model. The OXTR CC genotype was found significantly associated with higher contents of odd branched-chain fatty acids (OBCFA) (P < 0·0006), polyunsaturated FA (PUFA n 3 and n 6) (P < 0·0032 and P < 0·0006, respectively), stearic acid (C18) (P < 0·02) and lower level of palmitic acid (C16) (P < 0·02). The results of this study suggest that the OXTR CC animals might be useful in selection toward the improvement of milk fatty acid composition.
Assuntos
Búfalos/genética , Ácidos Graxos/análise , Leite/química , Polimorfismo de Nucleotídeo Único/genética , Receptores de Ocitocina/genética , Sequência de Aminoácidos , Aminoácidos de Cadeia Ramificada/análise , Animais , Sequência de Bases , Ácidos Graxos Ômega-3/análise , Feminino , Frequência do Gene , Genótipo , Itália , Ocitocina , Ácido Palmítico/análise , Filogenia , Receptores de Ocitocina/química , Ácidos Esteáricos/análiseRESUMO
The purpose of the study described in this Research Communication was to report the full characterisation of the goat and sheep oxytocin-neurophysin I gene (OXT), their promoters and amino acid sequences. Using the genomic DNA as template, we sequenced and compared the whole OXT gene (3 exons), plus 958/960 nucleotides at the 5' flanking region and 478/477 nucleotides at the 3' flanking region, in 46 sheep and 24 goats belonging to different breeds/genetic types reared in Italy, Greece and Germany. The comparison of the obtained sequences showed a high degree of genetic variability at these loci. In particular, we focused on the SNP g.438T > C as possible example of trans-specific polymorphism. This SNP alters a putative binding site of the transcription factor Oct-1. The set-up of a luciferase assay confirmed that the C variant of this SNP negatively affects the promoter activity of the sheep OXT gene. The results of this study suggest that the SNP g.438T > C might be useful to promote association studies with traits/physiological processes controlled by this hormone.
Assuntos
Cabras/genética , Neurofisinas/genética , Ocitocina/genética , Polimorfismo de Nucleotídeo Único/genética , Regiões Promotoras Genéticas/genética , Ovinos/genética , Sequência de Aminoácidos , Animais , Sítios de Ligação/genética , Variação Genética/genética , Alemanha , Grécia , Itália , Neurofisinas/química , Fator 1 de Transcrição de Octâmero/metabolismo , Ocitocina/química , Polimorfismo Genético/genéticaRESUMO
The αs2-casein is a phosphoprotein secreted in the milk of most mammals, and it is the most hydrophilic of all caseins. Contrary to genes found in ruminants, in donkeys two different encoding genes for donkey αs2-casein (CSN1S2 I and CSN1S2 II) have been identified. However, unlike in ruminants, the variability at these loci has not been characterized in detail in donkeys until now. In this study, we analyze the transcript profile of the donkey CSN1S2 I and CSN1S2 II genes, and we identify and describe the variability of these loci in the Ragusana and Amiatina breeds reared in Italy. The analysis of the CSN1S2 I Reverse Transcriptase-Polymerase Chain Reaction (RT-PCR) products and subsequent sequencing showed, in addition to correctly spliced mRNA, seven other minor mRNAs resulting from differential splicing events involving, in various combinations, entire exons (4, 5, 6, and 11), parts of exons (5' or 3' end of exon 17), or the recognition of intronic sequences as an exon (exon 12'). Similarly, the transcription analysis of the CSN1S2 II gene revealed a remarkable variability in splicing events, mainly concerning the alternative insertion of an extra exon 7 (named 7'); the first 33 bp of exon 13; or the alternative skipping of exons 9, 10, 11, 12, and 15, and their combinations. At the mRNA level for CSN1S2 I, seven SNPs were observed, five of which led to amino acid changes: p.T73>A, p.I109>V, p.I130>V, p.I146>T, and p.D217>Y. Similarly, nine SNPs were observed at the CSN1S2 II locus, seven of which are non-synonymous: p.L63>F, p.H70>Q, p.D90>N, p.129A>T, p.H131>Y, p.E144>G, and p.F157>S. In addition, the DNA sequencing of exon 17 and flanking introns of the CSN1S2 I gene revealed a G>A transition at the splice acceptor site of CSN1S2 I exon 17 (FM946022.1:c.375-1G>A), resulting in an allele-specific skipping of the first 15 nucleotides of this exon, which encode the peptide 176NKINQ180, and the recognition of an in-frame cryptic splicing acceptor site: arAACAAAATCAACCAG. A genotyping method based on restriction fragment length polymorphism (XbaI PCR-RFLP) was set up for this SNP. In the total population studied (105 Ragusana and 14 Amiatina donkeys), the A allele had a frequency of 0.2437 with no evidence of deviation from the Hardy-Weinberg equilibrium. This study adds new knowledge regarding the genetic variability of αs2-caseins in donkeys and may contribute significantly to the genetic improvement of milk production for this species.
RESUMO
The search for DNA polymorphisms useful for the genetic improvement of dairy farm animals has spanned more than 40 years, yielding relevant findings in cattle for milk traits, where the best combination of alleles for dairy processing has been found in casein genes and in DGAT1. Nowadays, similar results have not yet been reached in river buffaloes, despite the availability of advanced genomic technologies and accurate phenotype records. The aim of the present study was to investigate and validate the effect of four single nucleotide polymorphisms (SNP) in the CSN1S1, CSN3, SCD and LPL genes on seven milk traits in a larger buffalo population. These SNPs have previously been reported to be associated with, or affect, dairy traits in smaller populations often belonging to one farm. A total of 800 buffaloes were genotyped. The following traits were individually recorded, monthly, throughout each whole lactation period from 2010 to 2021: daily milk yield (dMY, kg), protein yield (dPY, kg) and fat yield (dFY, kg), fat and protein contents (dFP, % and dPP, %), somatic cell count (SCC, 103 cell/mL) and urea (mg/dL). A total of 15,742 individual milk test day records (2496 lactations) were available for 680 buffalo cows, with 3.6 ± 1.7 parities (from 1 to 13) and an average of 6.1 ± 1.2 test day records per lactation. Three out four SNPs in the CSN1S1, CSN3 and LPL genes were associated with at least one of analyzed traits. In particular, the CSN1S1 (AJ005430:c.578C>T) gave favorable associations with all yield traits (dMY, p = 0.022; dPY, p = 0.014; dFY, p = 0.029) and somatic cell score (SCS, p = 0.032). The CSN3 (HQ677596: c.536C>T) was positively associated with SCS (p = 0.005) and milk urea (p = 0.04). Favorable effects on daily milk yield (dMY, p = 0.028), fat (dFP, p = 0.027) and protein (dPP, p = 0.050) percentages were observed for the LPL. Conversely, the SCD did not show any association with milk traits. This is the first example of a confirmation study carried out in the Mediterranean river buffalo for genes of economic interest in the dairy field, and it represents a very important indication for the preselection of young bulls destined for breeding programs aimed at more sustainable dairy production.
RESUMO
Objective: The Bagnolese sheep is an authochtonous dual-purpose breed (milk and meat) reared in the Campania region, whose milk is used to produce Pecorino Bagnolese cheese. Genetic information on this sheep is extremely limited, especially regarding genes affecting productions. The aim of this study was to investigate milk production traits in Bagnolese sheep and the variability of diacylglycerol acyltransferase 1 (DGAT1) gene and its effects on milk production. Methods: Milk quantity was recorded during the morning milking, while Kjeldahl and Gerber methods were used to assess protein and fat percentage (w/v) of collected milk samples. Two PCR-RFLP protocols using BamHI and MspI endonucleases for genotyping of g.5553C>T and g.8539C>T at DGAT1 locus, respectively, were set up. Results: Bagnolese sheep milk shows high fat and protein concentrations. Genotyping revealed a high frequency of the g.5553C and g.8539C alleles (0.56 and 0.95, respectively). The association study between the SNP g.5553C>T and milk traits showed that animals with the CT genotype had a higher percentage of fat produced per milking than those with the CC and TT genotypes (p<0.01). Similar results were found for protein yield percentage, with CT individuals being more productive than CC individuals (p<0.01). Conclusion: Bagnolese sheep milk parameters found are associated with high yields in the resulting dairy products. CT genotype at the SNP g.5553 of DGAT1 has shown a positive association with fat and protein milk yield percentage suggesting it could be considered a marker to improve productions of this breed. Finally, the new genotyping techniques used for this study enable a cheap and reliable characterization of two DGAT1 SNPs in sheep.
RESUMO
The CSN1S2 gene encodes αs2-casein, the third most abundant protein in camel milk. Despite its importance in foals, human nutrition, and dairy processing, the CSN1S2 gene in camels has received little attention. This study presents the first complete characterization of the CSN1S2 gene sequence in Old-World camels (Camelus bactrianus and Camelus dromedarius). Additionally, the gene promoter, consisting of 752 bp upstream of exon 1, was analyzed. The entire gene comprises 17 exons, ranging in length from 24 bp (exons 4, 8, 11, and 13) to 280 bp (exon 17). Interesting was the identification of the exon 12 in both species. The promoter analysis revealed 24 putative binding sites in the Bactrian camel and 22 in dromedary camel. Most of these sites were typical elements associated with milk protein, such as C/EBP-α, C/EBP-ß, Oct-1, and AP1. The SNP discovery showed relatively high genetic diversity compared to other camel casein genes (CSN1S1, CSN2, and CSN3), with a total of 34 polymorphic sites across the two species. Particularly noteworthy is the transition g.311G>A in the CSN1S2 promoter, creating a new putative consensus binding site for a C/EBP-ß in the Bactrian camel. At the exon level, two novel variants were found. One was detected in exon 6 of the Bactrian camel (g.3639C>G), resulting in an amino acid replacement, p.36Ile>Met. The second variant was found in noncoding exon 17 of dromedary CSN1S2 (g.1511G>T). Although this mutation occurs in the 3'-UnTranslated Region, it represents the first example of exonic polymorphism in the CSN1S2 for this species. This SNP also affects the binding sites of different microRNAs, including the seed sequence of the miRNA 4662a-3p, highlighting its role as a regulatory factor for CSN1S2 gene. A PCR-RFLP was set up for genotyping a dromedary Tunisian population (n = 157), and the minor allele frequency was found to be 0.27 for the G allele, indicating a potential yield improvement margin. The interspersed elements (INEs) analysis revealed 10 INEs covering 7.34% and 8.14% of the CSN1S2 sequence in the Bactrian and dromedary camels, respectively. Furthermore, six elements (A, B, F, H, I, and L) are shared among cattle and camels and are partially found in other ruminants, suggesting a common ancestral origin of these retrotransposons. Conversely, elements C, D, E, and G are specific to camels.
RESUMO
Calcium-sensitive caseins are the main protein component of milk. In the goat, they are encoded by three genes (CSN1S1, CSN2, and CSN1S2) located on chromosome 6. A high number of alleles has been discovered for these genes in the goat species, responsible for changes in the milk's qualitative and quantitative characteristics. This study aimed to develop an Allele-Specific PCR (AS-PCR), which allowed us to unequivocally detect goat carriers of the CSN201 allele. Subsequently, the calcium-sensitive casein loci genotype was investigated in three native goat breeds of the Lazio Region (Bianca Monticellana, Capestrina, and Ciociara Grigia). No individuals were carriers of the CSN1S101, CSN1S1E, CSN201, CSN1S2D, and CSN1S20 alleles, while a high frequency of the alleles CSN1S1F and CSN1S1A*,B* was observed. Association analyses between the different genotypes at the CSN1S1 locus and some milk traits, namely the fat and protein yielded and the fat, protein, solids-not-fat, and casein percentages without an effect on the milk yield, were observed.
RESUMO
This study was undertaken to detect polymorphisms in the goat and sheep mannose-binding lectin encoding gene (MBL2) and to explore allelic variability of this gene in these two species. The analysis and comparison of the sequences obtained from sheep showed 13 polymorphic sites, six in the promoter and seven in exon 1, four of which were of the missense type. In the goats, 12 polymorphic sites were detected, five intronic, five in the promoter, and one exonic. The exon site was responsible for an amino acid change. Mutations detected at the MBL2 locus in the sheep are of particular interest, being potentially responsible for the alterations of gene expression. A population survey involved 102 ewes of the Sardinian breed and 218 goats of the Nicastrese breed, all reared in southern Italy.
Assuntos
Cabras/genética , Lectinas de Ligação a Manose/genética , Polimorfismo de Nucleotídeo Único , Carneiro Doméstico/genética , Animais , Éxons , Feminino , Imunidade Inata/genética , Íntrons , Itália , Mutação , Regiões Promotoras GenéticasRESUMO
The aim of this study was to evaluate possible associations between three SNPs at the oxytocin locus (AM234538: g.28C>T; g.204A>G and g.1627G>T) and two productive traits, milk yield and milkability, in Italian Mediterranean river buffaloes. Effects of parity, calving season and month of production were also evaluated. A total of 41 980 test-day records belonging to 219 lactations of 163 buffalo cows were investigated. The allele call rate was 98·8% and the major allele frequency for all the investigated loci was 0·76. The OXT genotype was significantly associated with milk yield (P=0·029). The TT genotype showed an average daily milk yield approximately 1·7 kg higher than GT buffaloes. Such a difference represents about 23% more milk/d. A large dominance effect (-1·17±0·43 kg) was estimated, whereas the contribution of OXT genotype (r(2)(OXT)) to the total phenotypic variance in milk yield was equal to 0·06. The TT genotype showed higher values also for the milk flow, even though the estimated difference did not reach a level of statistical significance (P=0·07). Such an association, among the first reported for the oxytocin locus in ruminants, should be tested on a population scale and possible effects on milk composition traits should be evaluated in order to supply useful indications for the application of marker-assisted selection programmes in river buffaloes.
Assuntos
Búfalos/genética , Genótipo , Lactação/genética , Ocitocina/genética , Animais , Búfalos/fisiologia , Feminino , Frequência do Gene , Itália , Desequilíbrio de Ligação/genética , Paridade , Polimorfismo de Nucleotídeo Único/genética , Estações do AnoRESUMO
An association study between the milk yield trait and the stearoyl-CoA desaturase (SCD) polymorphism (g.133A > C) in Italian Mediterranean river buffalo was carried out. A full characterization of the river buffalo SCD promoter region was presented. Genotyping information was provided and a quick method for allelic discrimination was developed. The frequency of the C allele was 0·16. Test-day (TD) records (43 510) of milk production belonging to 226 lactations of 169 buffalo cows were analysed with a mixed linear model in order to estimate the effect of g.133A > C genotype, as well as the effect of parity and calving season. The SCD genotype was significantly associated with milk yield (P = 0·02). The genotype AC showed an over-dominance effect with an average daily milk yield approximately 2 kg/d higher than CC buffaloes. Such a difference represents about 28% more milk/d. The effect of the genotype was constant across lactation stages. The contribution of SCD genotype (r(2)SCD) to the total phenotypic variance in milk yield was equal to 0·12. This report is among the first indications of genetic association between a trait of economic importance in river buffalo. Although such results need to be confirmed with large-scale studies in the same and other buffalo populations, they might offer useful indications for the application of MAS programmes in river buffalo and in the future they might be of great economic interest for the river buffalo dairy industry.
Assuntos
Búfalos/genética , Lactação/genética , Polimorfismo de Nucleotídeo Único/genética , Estearoil-CoA Dessaturase/genética , Animais , Sequência de Bases , Búfalos/fisiologia , Feminino , Genótipo , Leite , Dados de Sequência Molecular , Paridade , Gravidez , Regiões Promotoras Genéticas/genéticaRESUMO
An in-depth molecular characterization of the main milk proteins, caseins (CNs) and whey proteins, from Amiata donkey combining top-down proteomic analysis (LC-MS) and cDNA sequencing revealed multiple proteoforms arising from complex splicing patterns, including cryptic splice site usage and exon skipping events. Post-translational modifications, in particular phosphorylation, increased the variety and complexity of proteoforms. αs2-CN perfectly exemplifies such a complexity. With 2 functional genes, CSN1S2 I and CSN1S2 II, made of 20 and 16 exons respectively, nearly 30 different molecules of this CN were detected in the milk of one Amiata donkey. A cryptic splice site usage, leading to a singular shift of the open reading frame and generating two αs2-CN I isoforms with different C-terminal sequences, was brought to light. Twenty different αs1-CN molecules with different phosphorylation levels ranging between 4 and 9P were identified in a single milk sample, most of them resulting from exon skipping events and cryptic splice site usage. Novel genetic polymorphisms were detected for CNs (ß- and αs-CN) as well as for whey proteins (lysozyme C and ß-LG I). The probable new ß-LG I variant, with a significantly higher mass than known variants, appears to display an N-terminal extension possibly related to the signal peptide sequence. This represents the most comprehensive report to date detailing the complexity of donkey milk protein micro-heterogeneity, a prerequisite for discovering new elements to objectify the original properties of donkey's milk.
Assuntos
Equidae , Proteínas do Leite , Animais , Cromatografia Líquida , DNA Complementar , Equidae/genética , Proteínas do Leite/análise , Proteômica , Sítios de Splice de RNA , Espectrometria de Massas em Tandem , Proteínas do Soro do Leite/análiseRESUMO
The αs2-casein is one of the phosphoproteins secreted in all ruminants' milk, and it is the most hydrophilic of all caseins. However, this important gene (CSN1S2) has not been characterized in detail in buffaloes with only two alleles detected (reported as alleles A and B), and no association studies with milk traits have been carried out unlike what has been achieved for other species of ruminants. In this study, we sequenced the whole gene of two Mediterranean river buffalo homozygotes for the presence/absence of the nucleotide C (g.7539G>C) realized at the donor splice site of exon 7 and, therefore, responsible for the skipping of the same exon at mRNA level (allele B). A high genetic variability was found all over the two sequenced CSN1S2 alleles. In particular, 74 polymorphic sites were found in introns, six in the promoter, and three SNPs in the coding region (g.11072C>T, g.12803A>T, and g.14067A>G) with two of them responsible for amino acid replacements. Considering this genetic diversity, those found in the database and the SNP at the donor splice site of exon 7, it is possible to deduce at least eight different alleles (CSN1S2 A, B, B1, B2, C, D, E, and F) responsible for seven different possible translations of the buffalo αs2-casein. Haplotype data analysis suggests an evolutionary pathway of buffalo CSN1S2 gene consistent with our proposal that the published allele CSN1S2 A is the ancestral αs2-CN form, and the B2 probably arises from interallelic recombination (single crossing) between the alleles D and B (or B1). The allele CSN1S2 C is of new identification, while CSN1S2 B, B1, and B2 are deleted alleles because all are characterized by the mutation g.7539G>C. Two SNPs (g.7539G>C and g.14067A>G) were genotyped in 747 Italian buffaloes, and major alleles had a relative frequency of 0.83 and 0.51, respectively. An association study between these SNPs and milk traits including fatty acid composition was carried out. The SNP g.14067A>G showed a significant association (P < 0.05) on the content of palmitic acid in buffalo milk, thus suggesting its use in marker-assisted selection programs aiming for the improvement of buffalo milk fatty acid composition.
RESUMO
The aim of this study was the characterization of CSN1S1, CSN2 and CSN3 genetic variability in Agerolese cattle, and the investigation of the effect of casein composite genotypes (CSN1S1, CSN2 and CSN3) on quality and coagulation traits of the corresponding milk. To these purposes, blood and milk from 84 cows were sampled and analysed. Allele frequencies at CSN2 and CSN3 revealed no Hardy-Weinberg equilibrium in the population with a prevalence of allele A2 for CSN2 and allele B for CSN3. BBA1A2AB and BBA2A2AB composite genotypes were the most common in the population. BBA1A2AB showed a higher total solids and fat content (12.70 ± 0.16 and 3.93 ± 0.10, respectively), while BBA2A2BB showed the best coagulation properties (RCT 12.62 ± 0.81; k20 5.84 ± 0.37; a30 23.72 ± 1.10). Interestingly, the A2 allele of CSN2 was very widespread in the population; thus, it will be intriguing to verify if A2A2 Agerolese cattle milk and the derived cheese may have better nutraceutical characteristics.