Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(25): e2318535121, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38865270

RESUMO

The heart beats approximately 100,000 times per day in humans, imposing substantial energetic demands on cardiac muscle. Adenosine triphosphate (ATP) is an essential energy source for normal function of cardiac muscle during each beat, as it powers ion transport, intracellular Ca2+ handling, and actin-myosin cross-bridge cycling. Despite this, the impact of excitation-contraction coupling on the intracellular ATP concentration ([ATP]i) in myocytes is poorly understood. Here, we conducted real-time measurements of [ATP]i in ventricular myocytes using a genetically encoded ATP fluorescent reporter. Our data reveal rapid beat-to-beat variations in [ATP]i. Notably, diastolic [ATP]i was <1 mM, which is eightfold to 10-fold lower than previously estimated. Accordingly, ATP-sensitive K+ (KATP) channels were active at physiological [ATP]i. Cells exhibited two distinct types of ATP fluctuations during an action potential: net increases (Mode 1) or decreases (Mode 2) in [ATP]i. Mode 1 [ATP]i increases necessitated Ca2+ entry and release from the sarcoplasmic reticulum (SR) and were associated with increases in mitochondrial Ca2+. By contrast, decreases in mitochondrial Ca2+ accompanied Mode 2 [ATP]i decreases. Down-regulation of the protein mitofusin 2 reduced the magnitude of [ATP]i fluctuations, indicating that SR-mitochondrial coupling plays a crucial role in the dynamic control of ATP levels. Activation of ß-adrenergic receptors decreased [ATP]i, underscoring the energetic impact of this signaling pathway. Finally, our work suggests that cross-bridge cycling is the largest consumer of ATP in a ventricular myocyte during an action potential. These findings provide insights into the energetic demands of EC coupling and highlight the dynamic nature of ATP concentrations in cardiac muscle.


Assuntos
Trifosfato de Adenosina , Cálcio , Acoplamento Excitação-Contração , Ventrículos do Coração , Miócitos Cardíacos , Miócitos Cardíacos/metabolismo , Trifosfato de Adenosina/metabolismo , Acoplamento Excitação-Contração/fisiologia , Animais , Cálcio/metabolismo , Ventrículos do Coração/metabolismo , Ventrículos do Coração/citologia , Potenciais de Ação/fisiologia , Retículo Sarcoplasmático/metabolismo , Frequência Cardíaca/fisiologia , Humanos , Canais KATP/metabolismo , Contração Miocárdica/fisiologia , Camundongos
2.
Proc Natl Acad Sci U S A ; 120(14): e2221242120, 2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-36976770

RESUMO

CaV1.2 channels are critical players in cardiac excitation-contraction coupling, yet we do not understand how they are affected by an important therapeutic target of heart failure drugs and regulator of blood pressure, angiotensin II. Signaling through Gq-coupled AT1 receptors, angiotensin II triggers a decrease in PIP2, a phosphoinositide component of the plasma membrane (PM) and known regulator of many ion channels. PIP2 depletion suppresses CaV1.2 currents in heterologous expression systems but the mechanism of this regulation and whether a similar phenomenon occurs in cardiomyocytes is unknown. Previous studies have shown that CaV1.2 currents are also suppressed by angiotensin II. We hypothesized that these two observations are linked and that PIP2 stabilizes CaV1.2 expression at the PM and angiotensin II depresses cardiac excitability by stimulating PIP2 depletion and destabilization of CaV1.2 expression. We tested this hypothesis and report that CaV1.2 channels in tsA201 cells are destabilized after AT1 receptor-triggered PIP2 depletion, leading to their dynamin-dependent endocytosis. Likewise, in cardiomyocytes, angiotensin II decreased t-tubular CaV1.2 expression and cluster size by inducing their dynamic removal from the sarcolemma. These effects were abrogated by PIP2 supplementation. Functional data revealed acute angiotensin II reduced CaV1.2 currents and Ca2+ transient amplitudes thus diminishing excitation-contraction coupling. Finally, mass spectrometry results indicated whole-heart levels of PIP2 are decreased by acute angiotensin II treatment. Based on these observations, we propose a model wherein PIP2 stabilizes CaV1.2 membrane lifetimes, and angiotensin II-induced PIP2 depletion destabilizes sarcolemmal CaV1.2, triggering their removal, and the acute reduction of CaV1.2 currents and contractility.


Assuntos
Angiotensina II , Acoplamento Excitação-Contração , Células Cultivadas , Angiotensina II/metabolismo , Transdução de Sinais , Miócitos Cardíacos/metabolismo , Canais de Cálcio Tipo L/genética , Canais de Cálcio Tipo L/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo
3.
FASEB J ; 35(10): e21901, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34569665

RESUMO

Chagasic cardiomyopathy (CCC) is one of the main causes of heart failure and sudden death in Latin America. To date, there is no available medication to prevent or reverse the onset of cardiac symptoms. CCC occurs in a scenario of disrupted calcium dynamics and enhanced oxidative stress, which combined, may favor the hyper activation of calcium/calmodulin (Ca2+ /CaM)-calcium/calmodulin-dependent protein kinase II (CaMKII) (Ca2+ /CaM-CaMKII) pathway, which is fundamental for heart physiology and it is implicated in other cardiac diseases. Here, we evaluated the association between Ca2+ /CaM-CaMKII in the electro-mechanical (dys)function of the heart in the early stage of chronic experimental Trypanosoma cruzi infection. We observed that in vitro and ex vivo inhibition of Ca2+ /CaM-CaMKII reversed the arrhythmic profile of isolated hearts and isolated left-ventricles cardiomyocytes. The benefits of the limited Ca2+ /CaM-CaMKII activation to cardiomyocytes' electrical properties are partially related to the restoration of Ca2+ dynamics in a damaged cellular environment created after T. cruzi infection. Moreover, Ca2+ /CaM-CaMKII inhibition prevented the onset of arrhythmic contractions on isolated heart preparations of chagasic mice and restored the responsiveness to the increase in the left-ventricle pre-load. Taken together, our data provide the first experimental evidence for the potential of targeting Ca2+ /CaM-CaMKII pathway as a novel therapeutic target to treat CCC.


Assuntos
Arritmias Cardíacas/metabolismo , Sinalização do Cálcio , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Cálcio/metabolismo , Calmodulina/metabolismo , Cardiomiopatia Chagásica/metabolismo , Trypanosoma cruzi/metabolismo , Animais , Arritmias Cardíacas/parasitologia , Cardiomiopatia Chagásica/parasitologia , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos BALB C
4.
Nano Lett ; 17(10): 5938-5949, 2017 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-28895736

RESUMO

Electrically active field-effect transistors (FET) based biosensors are of paramount importance in life science applications, as they offer direct, fast, and highly sensitive label-free detection capabilities of several biomolecules of specific interest. In this work, we report a detailed investigation on surface functionalization and covalent immobilization of biomarkers using biocompatible ethanolamine and poly(ethylene glycol) derivate coatings, as compared to the conventional approaches using silica monoliths, in order to substantially increase both the sensitivity and molecular selectivity of nanowire-based FET biosensor platforms. Quantitative fluorescence, atomic and Kelvin probe force microscopy allowed detailed investigation of the homogeneity and density of immobilized biomarkers on different biofunctionalized surfaces. Significantly enhanced binding specificity, biomarker density, and target biomolecule capture efficiency were thus achieved for DNA as well as for proteins from pathogens. This optimized functionalization methodology was applied to InP nanowires that due to their low surface recombination rates were used as new active transducers for biosensors. The developed devices provide ultrahigh label-free detection sensitivities ∼1 fM for specific DNA sequences, measured via the net change in device electrical resistance. Similar levels of ultrasensitive detection of ∼6 fM were achieved for a Chagas Disease protein marker (IBMP8-1). The developed InP nanowire biosensor provides thus a qualified tool for detection of the chronic infection stage of this disease, leading to improved diagnosis and control of spread. These methodological developments are expected to substantially enhance the chemical robustness, diagnostic reliability, detection sensitivity, and biomarker selectivity for current and future biosensing devices.


Assuntos
Antígenos de Protozoários/análise , Técnicas Biossensoriais/instrumentação , Doença de Chagas/diagnóstico , Nanofios/química , Trypanosoma cruzi/isolamento & purificação , Anticorpos Imobilizados/química , Antígenos de Protozoários/genética , Biomarcadores/análise , Técnicas Biossensoriais/métodos , Doença de Chagas/parasitologia , DNA/análise , DNA/genética , Desenho de Equipamento , Humanos , Índio/química , Modelos Moleculares , Fosfinas/química , Propriedades de Superfície , Transistores Eletrônicos , Trypanosoma cruzi/genética
5.
Nat Commun ; 15(1): 3528, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664444

RESUMO

Cardiac dysfunction is a hallmark of aging in humans and mice. Here we report that a two-week treatment to restore youthful Bridging Integrator 1 (BIN1) levels in the hearts of 24-month-old mice rejuvenates cardiac function and substantially reverses the aging phenotype. Our data indicate that age-associated overexpression of BIN1 occurs alongside dysregulated endosomal recycling and disrupted trafficking of cardiac CaV1.2 and type 2 ryanodine receptors. These deficiencies affect channel function at rest and their upregulation during acute stress. In vivo echocardiography reveals reduced systolic function in old mice. BIN1 knockdown using an adeno-associated virus serotype 9 packaged shRNA-mBIN1 restores the nanoscale distribution and clustering plasticity of ryanodine receptors and recovers Ca2+ transient amplitudes and cardiac systolic function toward youthful levels. Enhanced systolic function correlates with increased phosphorylation of the myofilament protein cardiac myosin binding protein-C. These results reveal BIN1 knockdown as a novel therapeutic strategy to rejuvenate the aging myocardium.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Envelhecimento , Miocárdio , Proteínas do Tecido Nervoso , Canal de Liberação de Cálcio do Receptor de Rianodina , Proteínas Supressoras de Tumor , Animais , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Masculino , Envelhecimento/metabolismo , Camundongos , Proteínas Supressoras de Tumor/metabolismo , Proteínas Supressoras de Tumor/genética , Miocárdio/metabolismo , Miocárdio/patologia , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Técnicas de Silenciamento de Genes , Endossomos/metabolismo , Canais de Cálcio Tipo L/metabolismo , Canais de Cálcio Tipo L/genética , Coração/fisiopatologia , Camundongos Endogâmicos C57BL , Humanos , Miócitos Cardíacos/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , RNA Interferente Pequeno/metabolismo , RNA Interferente Pequeno/genética , Sístole
6.
Microorganisms ; 10(2)2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-35208732

RESUMO

Chagas disease (CD) is caused by the parasitic protozoan T. cruzi. The progression of CD in ~30% of patients results in Chagasic Cardiomyopathy (CCM). Currently, it is known that the inflammatory system plays a significant role in the CCM. Interferon-gamma (IFN-γ) is the major cytokine involved in parasitemia control but has also been linked to CCM. The L-type calcium current (ICa,L) is crucial in the excitation/contraction coupling in cardiomyocytes. Thus, we compared ICa,L and the mechanical properties of cardiomyocytes isolated from infected wild type (WT) and IFN-γ(-/-) mice in the first stage of T. cruzi infection. Using the patch clamp technique, we demonstrated that the infection attenuated ICa,L in isolated cardiomyocytes from the right and left ventricles of WT mice at 15 days post-infection (dpi), which was not observed in the IFN-γ(-/-) cardiomyocytes. However, ICa,L was attenuated between 26 and 30 dpi in both experimental groups. Interestingly, the same profile was observed in the context of the mechanical properties of isolated cardiomyocytes from both experimental groups. Simultaneously, we tracked the mortality and MCP-1, TNF-α, IL-12, IL-6, and IL-10 serum levels in the infected groups. Importantly, the IFN-γ(-/-) and WT mice presented similar parasitemia and serum inflammatory markers at 10 dpi, indicating that the modifications in the cardiomyocyte functions observed at 15 dpi were directly associated with IFN-γ(-/-) deficiency. Thus, we showed that IFN-γ plays a crucial role in the electromechanical remodeling of cardiomyocytes during experimental T. cruzi infection in mice.

7.
PLoS Negl Trop Dis ; 15(6): e0009421, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34077437

RESUMO

BACKGROUND: Chagas disease (CD) is a neglected disease that induces heart failure and arrhythmias in approximately 30% of patients during the chronic phase of the disease. Despite major efforts to understand the cellular pathophysiology of CD there are still relevant open questions to be addressed. In the present investigation we aimed to evaluate the contribution of the Na+/Ca2+ exchanger (NCX) in the electrical remodeling of isolated cardiomyocytes from an experimental murine model of chronic CD. METHODOLOGY/PRINCIPAL FINDINGS: Male C57BL/6 mice were infected with Colombian strain of Trypanosoma cruzi. Experiments were conducted in isolated left ventricular cardiomyocytes from mice 180-200 days post-infection and with age-matched controls. Whole-cell patch-clamp technique was used to measure cellular excitability and Real-time PCR for parasite detection. In current-clamp experiments, we found that action potential (AP) repolarization was prolonged in cardiomyocytes from chagasic mice paced at 0.2 and 1 Hz. After-depolarizations, both subthreshold and with spontaneous APs events, were more evident in the chronic phase of experimental CD. In voltage-clamp experiments, pause-induced spontaneous activity with the presence of diastolic transient inward current was enhanced in chagasic cardiomyocytes. AP waveform disturbances and diastolic transient inward current were largely attenuated in chagasic cardiomyocytes exposed to Ni2+ or SEA0400. CONCLUSIONS/SIGNIFICANCE: The present study is the first to describe NCX as a cellular arrhythmogenic substrate in chagasic cardiomyocytes. Our data suggest that NCX could be relevant to further understanding of arrhythmogenesis in the chronic phase of experimental CD and blocking NCX may be a new therapeutic strategy to treat arrhythmias in this condition.


Assuntos
Arritmias Cardíacas/patologia , Cardiomiopatia Chagásica/patologia , Potenciais de Ação , Compostos de Anilina/farmacologia , Animais , Cálcio/metabolismo , Fenômenos Eletrofisiológicos , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/patologia , Doenças Negligenciadas , Níquel/farmacologia , Técnicas de Patch-Clamp , Éteres Fenílicos/farmacologia , Retículo Sarcoplasmático/metabolismo , Trocador de Sódio e Cálcio/metabolismo
8.
Food Waterborne Parasitol ; 22: e00111, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33681489

RESUMO

Foodborne outbreaks caused by parasites have long been a public health issue. Among the available contamination detection methods, qPCR is one of the most sensitive and specific. However, it can be cumbersome and error-prone, if used by unexperienced users. Moreover, qPCR reagents usually require freezer temperatures for transportation and storage. We present a gelified reaction format that allows the reagents to be stored at 2-8 °C for up to 90 days without losing performance. The gelification process eliminates most operator mistakes during reaction setup, and renders the qPCR plates ready-to-use. The new reaction makeup was evaluated using artificially contaminated samples of distinct food matrices for sensitivity, specificity, repeatability, reproducibility, and stability. Samples consisted of cilantro leaves and raspberry fruits spiked with Cyclospora cayetanensis oocysts, as well as açai pulp and sugarcane juice tainted with Trypanosoma cruzi trypomastigotes. No significant difference between the gelified and the non-gelified qPCR was found. Our results suggest that gelifying the assay may help to achieve more reproducible qPCR data across laboratories, thus supporting surveillance actions. (170 words).

9.
J Mol Cell Cardiol ; 46(6): 858-66, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19118560

RESUMO

Mitochondria are central players in the pathophysiology of ischemia-reperfusion. Activation of plasma membrane G-coupled receptors or the Na,K-ATPase triggers cytosolic signaling pathways that result in cardioprotection. Our working hypothesis is that the occupied receptors migrate to caveolae, where signaling enzymes are scaffolded into signalosomes that bud off the plasma membrane and migrate to mitochondria. The signalosome-mitochondria interaction then initiates intramitochondrial signaling by opening the mitochondrial ATP-sensitive K(+) channel (mitoK(ATP)). MitoK(ATP) opening causes an increase in ROS production, which activates mitochondrial protein kinase C epsilon (PKCvarepsilon), which inhibits the mitochondrial permeability transition (MPT), thus decreasing cell death. We review the experimental findings that bear on these hypotheses and other modes of protection involving mitochondria.


Assuntos
Mitocôndrias Cardíacas/fisiologia , Transdução de Sinais/fisiologia , Animais , Humanos , Canais KATP/metabolismo , Mitocôndrias Cardíacas/metabolismo , Proteína Quinase C-épsilon/metabolismo , Espécies Reativas de Oxigênio/metabolismo
10.
J Bioenerg Biomembr ; 41(2): 123-6, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19353252

RESUMO

In addition to their role in energy transduction, mitochondria play important non-canonical roles in cell pathophysiology, several of which utilize the mitochondrial ATP-sensitive K(+) channel (mitoK(ATP)). In the normal heart, mitoK(ATP) regulates energy transfer through its regulation of intermembrane space volume and is accordingly essential for the inotropic response during periods of high workload. In the ischemic heart, mitoK(ATP) is the point of convergence of protective signaling pathways and mediates inhibition of the mitochondrial permeability transition, and thus necrosis. In this review, we outline the experimental evidence that support these roles for mitoK(ATP) in health and disease, as well as our hypothesis for the mechanism by which complex cardioprotective signals that originate at plasma membrane receptors traverse the cytosol to reach mitochondria and activate mitoK(ATP).


Assuntos
Metabolismo Energético , Mitocôndrias Cardíacas/metabolismo , Isquemia Miocárdica/metabolismo , Miocárdio/metabolismo , Canais de Potássio/metabolismo , Transdução de Sinais , Animais , Permeabilidade da Membrana Celular , Humanos , Membranas Mitocondriais
11.
Cardiovasc Res ; 77(2): 344-52, 2008 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-18006449

RESUMO

Much of cell death from ischaemia/reperfusion in heart and other tissues is generally thought to arise from mitochondrial permeability transition (MPT) in the first minutes of reperfusion. In ischaemic pre-conditioning, agonist binding to G(i) protein-coupled receptors prior to ischaemia triggers a signalling cascade that protects the heart from MPT. We believe that the cytosolic component of this trigger pathway terminates in activation of guanylyl cyclase resulting in increased production of cGMP and subsequent activation of protein kinase G (PKG). PKG phosphorylates a protein on the mitochondrial outer membrane (MOM), which then causes the mitochondrial K(ATP) channel (mitoK(ATP)) on the mitochondrial inner membrane to open, leading to increased production of reactive oxygen species (ROS) by the mitochondria. This implies that the protective signal is somehow transmitted from the MOM to its inner membrane. This is accomplished by a series of intermembrane signalling steps that includes protein kinase C (PKCepsilon) activation. The resulting ROS then activate a second PKC pool which, through another signal transduction pathway termed the mediator pathway, causes inhibition of MPT and reduction in cell death.


Assuntos
GMP Cíclico/fisiologia , Precondicionamento Isquêmico Miocárdico , Mitocôndrias Cardíacas/fisiologia , Transdução de Sinais/fisiologia , Animais , Quinase 3 da Glicogênio Sintase/fisiologia , Glicogênio Sintase Quinase 3 beta , Humanos , Concentração de Íons de Hidrogênio , Proteínas de Transporte da Membrana Mitocondrial , Poro de Transição de Permeabilidade Mitocondrial , Canais de Potássio/fisiologia , Proteína Quinase C-épsilon/fisiologia , Espécies Reativas de Oxigênio/metabolismo
13.
J Mol Diagn ; 21(5): 839-851, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31173930

RESUMO

Although molecular diagnostics is well established in clinical laboratories, its full potential has not been extended to field settings. Typically, diagnostic real-time quantitative PCR (qPCR) reagents require temperature-controlled transportation and storage. Furthermore, thermocyclers are bulky and fragile, requiring good infrastructure for optimal operation. These major hurdles strongly limit use of molecular-based tests in low-resource scenarios. Herein, Trypanosoma cruzi or Plasmodium spp. DNA were detected with qPCR using commercial equipment (ABI7500 instrument) and a prototype platform comprising a portable device and a silicon chip, named Q3-Plus. In addition, a ready-to-use reaction format, where all qPCR reagents are stored on plate or on chip, was compared with the traditional freezer-stored format. No significant differences were observed in detecting T. cruzi or Plasmodium spp. DNA between thermocyclers, as well as between reagents' formats, for storage periods of up to 28 days (at 2°C to 8°C or 21°C to 23°C, respectively). When challenged with patients' samples, the Q3-Plus system performed as efficiently as the standard equipment for Plasmodium spp. DNA detection, showing it to be a valuable solution to malaria point-of-care diagnostics. Detection of T. cruzi DNA in chronic patients' samples using the Q3-Plus system yielded approximately 50% efficiency relative to the ABI7500. These results are essential to support future endeavors to bring molecular diagnostics to the point of care, where most needed.


Assuntos
Doença de Chagas/diagnóstico , DNA de Protozoário/análise , Testes Diagnósticos de Rotina/instrumentação , Malária Falciparum/diagnóstico , Plasmodium falciparum/genética , Reação em Cadeia da Polimerase em Tempo Real/métodos , Trypanosoma cruzi/genética , Doença de Chagas/parasitologia , DNA de Protozoário/sangue , DNA de Protozoário/genética , Testes Diagnósticos de Rotina/métodos , Testes Diagnósticos de Rotina/normas , Humanos , Malária Falciparum/parasitologia , Plasmodium falciparum/isolamento & purificação , Trypanosoma cruzi/isolamento & purificação
14.
Circ Res ; 99(8): 878-83, 2006 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-16960097

RESUMO

Mitochondria are key mediators of the cardioprotective signal and the mitochondrial ATP-sensitive K+ channel (mitoK(ATP)) plays a crucial role in originating and transmitting that signal. Recently, protein kinase C epsilon (PKC epsilon) has been identified as a component of the mitoK(ATP) signaling cascade. We hypothesized that PKC epsilon and mitoK(ATP) interact directly to form functional signaling modules in the inner mitochondria membrane. To examine this possibility, we studied K+ flux in liposomes containing partially purified mitoK(ATP). The reconstituted proteins were obtained after detergent extraction of isolated mitochondria, 200-fold purification by ion exchange chromatography, and reconstitution into lipid vesicles. Immunoblot analysis revealed the presence of PKC epsilon in the reconstitutively active fraction. Addition of the PKC activators 12-phorbol 13-myristate acetate, hydrogen peroxide, and the specific PKC epsilon peptide agonist, psi epsilonRACK, each activated mitoK(ATP)-dependent K+ flux in the reconstituted system. This effect of PKC epsilon was prevented by chelerythrine, by the specific PKC epsilon peptide antagonist, epsilonV(1-2), and by the specific mitoK(ATP) inhibitor 5-hydroxydecanoate. In addition, the activating effect of PKC agonists was reversed by exogenous protein phosphatase 2A. These results demonstrate persistent, functional association of mitochondrial PKC epsilon and mitoK(ATP).


Assuntos
Trifosfato de Adenosina/metabolismo , Membranas Mitocondriais/metabolismo , Canais de Potássio/metabolismo , Proteína Quinase C-épsilon/metabolismo , Proteolipídeos/metabolismo , Transdução de Sinais/fisiologia , Animais , Ativação Enzimática/fisiologia , Membranas Mitocondriais/enzimologia , Fosfoproteínas Fosfatases/farmacologia , Potássio/metabolismo , Canais de Potássio/isolamento & purificação , Proteína Quinase C-épsilon/isolamento & purificação , Proteína Fosfatase 2 , Proteolipídeos/química , Ratos
15.
Anesth Analg ; 106(4): 1049-55, table of contents, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18349172

RESUMO

BACKGROUND: Mitochondrial (m) adenosine triphosphate sensitive potassium (K(ATP)) channel opening has been reported to trigger and/or mediate cardioprotection by volatile anesthetics. However, the effects of volatile anesthetics on mitochondrial function are not well understood. Prevention of mitochondrial matrix volume (MMV) contraction during ischemia may contribute to cardioprotection against ischemia/reperfusion injury. We investigated whether sevoflurane increases MMV and if this increase is mediated by mK(ATP) channel opening. METHODS: Mitochondria from fresh guinea pig hearts were isolated and diluted in buffer that included oligomycin and ATP to inhibit ATP synthesis. Changes in MMV by diazoxide, a known mK(ATP) channel opener, and by different sevoflurane concentrations, were measured by light absorption at 520 nm in the absence or presence of the mK(ATP) channel blocker, 5-hydroxydecanoate. RESULTS: Compared with control, 30-300 microM sevoflurane (approximately 0.2-2.1 vol %) increased MMV by 30%-55%, which was similar to the effect of diazoxide. These increases were blocked by 5-hydroxydecanoate. Higher sevoflurane concentration (1000 microM; 7.1 vol %), however, had no effect on MMV. CONCLUSIONS: In clinically relevant concentrations, sevoflurane increases MMV via mK(ATP) channel opening. Preservation of mitochondrial integrity may contribute to the cardioprotective effects of sevoflurane against ischemia/reperfusion injury. Impaired mitochondrial function at supraclinical anesthetic concentrations may explain the observed biphasic response. These findings add to our understanding of the intracellular mechanisms of volatile anesthetics as cardioprotective drugs.


Assuntos
Éteres Metílicos/farmacologia , Mitocôndrias Cardíacas/ultraestrutura , Trifosfato de Adenosina/metabolismo , Animais , Feminino , Cobaias , Heparina/farmacologia , Cinética , Masculino , Mitocôndrias Cardíacas/efeitos dos fármacos , Sevoflurano , Valinomicina/farmacologia
16.
Circ Res ; 97(4): 329-36, 2005 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-16037573

RESUMO

Ischemic and pharmacological preconditioning can be triggered by an intracellular signaling pathway in which Gi-coupled surface receptors activate a cascade including phosphatidylinositol 3-kinase, endothelial nitric oxide synthase, guanylyl cyclase, and protein kinase G (PKG). Activated PKG opens mitochondrial KATP channels (mitoKATP) which increase production of reactive oxygen species. Steps between PKG and mitoKATP opening are unknown. We describe effects of adding purified PKG and cGMP on K+ transport in isolated mitochondria. Light scattering and respiration measurements indicate PKG induces opening of mitoKATP similar to KATP channel openers like diazoxide and cromakalim in heart, liver, and brain mitochondria. This effect was blocked by mitoKATP inhibitors 5-hydroxydecanoate, tetraphenylphosphonium, and glibenclamide, PKG-selective inhibitor KT5823, and protein kinase C (PKC) inhibitors chelerythrine, Ro318220, and PKC-epsilon peptide antagonist epsilonV(1-2). MitoKATP are opened by the PKC activator 12-phorbol 13-myristate acetate. We conclude PKG is the terminal cytosolic component of the trigger pathway; it transmits the cardioprotective signal from cytosol to inner mitochondrial membrane by a pathway that includes PKC-epsilon.


Assuntos
Proteínas Quinases Dependentes de GMP Cíclico/fisiologia , Citosol/metabolismo , Precondicionamento Isquêmico Miocárdico , Mitocôndrias Cardíacas/metabolismo , Transdução de Sinais/fisiologia , Trifosfato de Adenosina/farmacologia , Animais , Encéfalo/metabolismo , GMP Cíclico/fisiologia , Masculino , Mitocôndrias Hepáticas/metabolismo , Consumo de Oxigênio , Canais de Potássio/fisiologia , Proteína Quinase C/fisiologia , Ratos , Ratos Wistar , Acetato de Tetradecanoilforbol/farmacologia , Compostos de Tetraetilamônio/farmacologia
17.
Biochim Biophys Acta ; 1606(1-3): 1-21, 2003 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-14507424

RESUMO

Coronary artery disease and its sequelae-ischemia, myocardial infarction, and heart failure-are leading causes of morbidity and mortality in man. Considerable effort has been devoted toward improving functional recovery and reducing the extent of infarction after ischemic episodes. As a step in this direction, it was found that the heart was significantly protected against ischemia-reperfusion injury if it was first preconditioned by brief ischemia or by administering a potassium channel opener. Both of these preconditioning strategies were found to require opening of a K(ATP) channel, and in 1997 we showed that this pivotal role was mediated by the mitochondrial ATP-sensitive K(+) channel (mitoK(ATP)). This paper will review the evidence showing that opening mitoK(ATP) is cardioprotective against ischemia-reperfusion injury and, moreover, that mitoK(ATP) plays this role during all three phases of the natural history of ischemia-reperfusion injury preconditioning, ischemia, and reperfusion. We discuss two distinct mechanisms by which mitoK(ATP) opening protects the heart-increased mitochondrial production of reactive oxygen species (ROS) during the preconditioning phase and regulation of intermembrane space (IMS) volume during the ischemic and reperfusion phases. It is likely that cardioprotection by ischemic preconditioning (IPC) and K(ATP) channel openers (KCOs) arises from utilization of normal physiological processes. Accordingly, we summarize the results of new studies that focus on the role of mitoK(ATP) in normal cardiomyocyte physiology. Here, we observe the same two mechanisms at work. In low-energy states, mitoK(ATP) opening triggers increased mitochondrial ROS production, thereby amplifying a cell signaling pathway leading to gene transcription and cell growth. In high-energy states, mitoK(ATP) opening prevents the matrix contraction that would otherwise occur during high rates of electron transport. MitoK(ATP)-mediated volume regulation, in turn, prevents disruption of the structure-function of the IMS and facilitates efficient energy transfers between mitochondria and myofibrillar ATPases.


Assuntos
Proteínas de Membrana/fisiologia , Mitocôndrias Cardíacas/fisiologia , Potássio/metabolismo , Animais , Transporte Biológico , Cardiotônicos , Humanos , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Canais de Potássio
19.
Int J Parasitol ; 39(9): 955-61, 2009 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-19504755

RESUMO

Mammalian mitochondria, as well as rat, plant and Caenorhabditis elegans mitochondria, possess an ATP-sensitive K+ channel (mitoK(ATP)) that has been pharmacologically characterised. Opening of mitoK(ATP) and the subsequent K+ entry into the matrix was shown to have three effects on mitochondria physiology: (i) an increase in matrix volume (swelling), (ii) an acceleration of respiration, and (iii) an increase in reactive oxygen species (ROS) production. These effects on mitochondria bioenergetics have been shown to be part of distinct intracellular signalling pathways, to protect against cell death and to modulate gene transcription. To date, such a channel or its activity has not been described in trypanosomatids. In the present study, we show pharmacological evidence for the presence of a mitoK(ATP) in trypanosomatids. Cells were incubated in a hypotonic medium followed by mild detergent exposure to isolate mitoplasts from Trypanosoma cruzi and Crithidia fasciculata. Mitoplasts swelled when incubated in KCl medium due to respiration-driven K+ entry into the matrix. Swelling was sensitive to the presence of ATP when the mitoplast suspension was incubated in K+ -containing, but not in K+ -free, medium. The ATP inhibition of swelling was reversed by the mitoK(ATP) agonist diazoxide and the diazoxide-induced swelling was inhibited by the mitoK(ATP) blockers 5-hydroxydecanoate (5HD) or glibenclamide. Similar to mammalian and rat mitochondria, trypanosomatid mitoK(ATP) activity was modulated by the general protein kinase C (PKC) agonist phorbol 12-myristate 13-acetate (PMA) and antagonist chelerythrine. As expected, the potassium ionophore valinomycin could also reverse the ATP-inhibited state but this reversal was not sensitive to 5HD or glibenclamide. Dose response curves for ATP, diazoxide and 5HD are presented. These results provide strong evidence for the presence of an ATP-sensitive K+ in trypanosomatid mitochondria.


Assuntos
Crithidia fasciculata/isolamento & purificação , Crithidia fasciculata/metabolismo , Mitocôndrias/metabolismo , Canais de Potássio/metabolismo , Trypanosoma cruzi/metabolismo , Animais , Permeabilidade , Ratos
20.
Am J Physiol Heart Circ Physiol ; 295(2): H874-82, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18586884

RESUMO

Activation of protein kinase Cepsilon (PKCepsilon), opening of mitochondrial ATP-sensitive K(+) channels (mitoK(ATP)), and increased mitochondrial reactive oxygen species (ROS) are key events in the signaling that underlies cardioprotection. We showed previously that mitoK(ATP) is opened by activation of a mitochondrial PKCepsilon, designated PKCepsilon1, that is closely associated with mitoK(ATP). mitoK(ATP) opening then causes an increase in ROS production by complex I of the respiratory chain. This ROS activates a second pool of PKCepsilon, designated PKCepsilon2, which inhibits the mitochondrial permeability transition (MPT). In the present study, we measured mitoK(ATP)-dependent changes in mitochondrial matrix volume to further investigate the relationships among PKCepsilon, mitoK(ATP), ROS, and MPT. We present evidence that 1) mitoK(ATP) can be opened by H(2)O(2) and nitric oxide (NO) and that these effects are mediated by PKCepsilon1 and not by direct actions on mitoK(ATP), 2) superoxide has no effect on mitoK(ATP) opening, 3) exogenous H(2)O(2) or NO also inhibits MPT opening, and both compounds do so independently of mitoK(ATP) activity via activation of PKCepsilon2, 4) mitoK(ATP) opening induced by PKG, phorbol ester, or diazoxide is not mediated by ROS, and 5) mitoK(ATP)-generated ROS activates PKCepsilon1 and induces phosphorylation-dependent mitoK(ATP) opening in vitro and in vivo. Thus mitoK(ATP)-dependent mitoK(ATP) opening constitutes a positive feedback loop capable of maintaining the channel open after the stimulus is no longer present. This feedback pathway may be responsible for the lasting protective effect of preconditioning, colloquially known as the memory effect.


Assuntos
Ativação do Canal Iônico , Mitocôndrias Cardíacas/enzimologia , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Canais de Potássio/metabolismo , Proteína Quinase C-épsilon/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Animais , Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Diazóxido/farmacologia , Ativação Enzimática , Retroalimentação Fisiológica , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Peróxido de Hidrogênio/metabolismo , Técnicas In Vitro , Ativação do Canal Iônico/efeitos dos fármacos , Masculino , Mitocôndrias Cardíacas/efeitos dos fármacos , Membranas Mitocondriais/enzimologia , Poro de Transição de Permeabilidade Mitocondrial , Tamanho Mitocondrial , Óxido Nítrico/metabolismo , Fosforilação , Canais de Potássio/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Superóxidos/metabolismo , Acetato de Tetradecanoilforbol/farmacologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA