Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
PLoS Genet ; 14(6): e1007432, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29912942

RESUMO

Axonal growth and guidance rely on correct growth cone responses to guidance cues. Unlike the signaling cascades that link axonal growth to cytoskeletal dynamics, little is known about the crosstalk mechanisms between guidance and membrane dynamics and turnover. Recent studies indicate that whereas axonal attraction requires exocytosis, chemorepulsion relies on endocytosis. Indeed, our own studies have shown that Netrin-1/Deleted in Colorectal Cancer (DCC) signaling triggers exocytosis through the SNARE Syntaxin-1 (STX1). However, limited in vivo evidence is available about the role of SNARE proteins in axonal guidance. To address this issue, here we systematically deleted SNARE genes in three species. We show that loss-of-function of STX1 results in pre- and post-commissural axonal guidance defects in the midline of fly, chick, and mouse embryos. Inactivation of VAMP2, Ti-VAMP, and SNAP25 led to additional abnormalities in axonal guidance. We also confirmed that STX1 loss-of-function results in reduced sensitivity of commissural axons to Slit-2 and Netrin-1. Finally, genetic interaction studies in Drosophila show that STX1 interacts with both the Netrin-1/DCC and Robo/Slit pathways. Our data provide evidence of an evolutionarily conserved role of STX1 and SNARE proteins in midline axonal guidance in vivo, by regulating both pre- and post-commissural guidance mechanisms.


Assuntos
Neurogênese/genética , Sintaxina 1/genética , Sintaxina 1/fisiologia , Animais , Axônios/metabolismo , Quimiotaxia/genética , Embrião de Galinha , Drosophila/genética , Proteínas de Drosophila/genética , Exocitose/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Glicoproteínas/genética , Glicoproteínas/metabolismo , Camundongos , Camundongos Knockout , Fatores de Crescimento Neural/genética , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Sistema Nervoso/embriologia , Netrina-1/genética , Netrina-1/metabolismo , Neurogênese/fisiologia , Proteínas Qa-SNARE/genética , Proteínas Qa-SNARE/fisiologia , Proteínas SNARE/genética , Proteínas SNARE/metabolismo , Transdução de Sinais/genética , Medula Espinal/embriologia , Medula Espinal/metabolismo
2.
J Neurosci ; 35(13): 5156-70, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25834042

RESUMO

Axonal guidance and synaptic specification depends on specific signaling mechanisms that occur in growth cones. While several signaling pathways implicated in cone navigation have been identified, membrane dynamics in growth cones remains largely unknown. We took advantage of SynaptopHluorin and high-speed optical recordings to monitor the patterns of membrane dynamics in rat hippocampal growth cones. We show that exocytosis occurs both at the peripheral and central domains, including filopodia, and that SynaptopHluorin signals occur as spontaneous patterned peaks. Such transients average approximately two per minute and last ∼30 s. We also demonstrate that the chemoattractant Netrin-1 elicits increases in the frequency and slopes of these transients, with peaks averaging up to six per minute in the peripheral domain. Netrin-1-dependent regulation of exocytotic events requires the activation of the Erk1/2 and SFK pathways. Furthermore, we show that domains with high SynaptopHluorin signals correlate with high local calcium concentrations and that local, spontaneous calcium increases are associated with higher SynaptopHluorin signals. These findings demonstrate highly stereotyped, spontaneous transients of local exocytosis in growth cones and that these transients are positively regulated by chemoattractant molecules such as Netrin-1.


Assuntos
Exocitose/fisiologia , Cones de Crescimento/fisiologia , Fatores de Crescimento Neural/fisiologia , Proteínas Supressoras de Tumor/fisiologia , Animais , Sinalização do Cálcio/fisiologia , Células Cultivadas , Proteínas de Fluorescência Verde/metabolismo , Hipocampo/citologia , Hipocampo/fisiologia , Netrina-1 , Neurônios/fisiologia , Imagem Óptica , Ratos , Proteínas Recombinantes de Fusão/metabolismo
3.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167187, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38653354

RESUMO

Clinical relevance of miRNAs as biomarkers is growing due to their stability and detection in biofluids. In this, diagnosis at asymptomatic stages of Alzheimer's disease (AD) remains a challenge since it can only be made at autopsy according to Braak NFT staging. Achieving the objective of detecting AD at early stages would allow possible therapies to be addressed before the onset of cognitive impairment. Many studies have determined that the expression pattern of some miRNAs is dysregulated in AD patients, but to date, none has been correlated with downregulated expression of cellular prion protein (PrPC) during disease progression. That is why, by means of cross studies of miRNAs up-regulated in AD with in silico identification of potential miRNAs-binding to 3'UTR of human PRNP gene, we selected miR-519a-3p for our study. Then, in vitro experiments were carried out in two ways. First, we validated miR-519a-3p target on 3'UTR-PRNP, and second, we analyzed the levels of PrPC expression after using of mimic technology on cell culture. In addition, RT-qPCR was performed to analyzed miR-519a-3p expression in human cerebral samples of AD at different stages of disease evolution. Additionally, samples of other neurodegenerative diseases such as other non-AD tauopathies and several synucleinopathies were included in the study. Our results showed that miR-519a-3p overlaps with PRNP 3'UTR in vitro and promotes downregulation of PrPC. Moreover, miR-519a-3p was found to be up-regulated exclusively in AD samples from stage I to VI, suggesting its potential use as a novel label of preclinical stages of the disease.


Assuntos
Regiões 3' não Traduzidas , Doença de Alzheimer , Biomarcadores , MicroRNAs , Proteínas Priônicas , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Doença de Alzheimer/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Doença de Alzheimer/diagnóstico , Proteínas Priônicas/genética , Proteínas Priônicas/metabolismo , Biomarcadores/metabolismo , Regiões 3' não Traduzidas/genética , Feminino , Idoso , Masculino , Idoso de 80 Anos ou mais , Proteínas PrPC/metabolismo , Proteínas PrPC/genética
5.
Front Mol Neurosci ; 16: 1253954, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37829513

RESUMO

Introduction: Brain connectivity requires correct axonal guidance to drive axons to their appropriate targets. This process is orchestrated by guidance cues that exert attraction or repulsion to developing axons. However, the intricacies of the cellular machinery responsible for the correct response of growth cones are just being unveiled. Netrin-1 is a bifunctional molecule involved in axon pathfinding and cell migration that induces repulsion during postnatal cerebellar development. This process is mediated by UNC5 homolog receptors located on external granule layer (EGL) tracts. Methods: Biochemical, imaging and cell biology techniques, as well as syntaxin-1A/B (Stx1A/B) knock-out mice were used in primary cultures and brain explants. Results and discussion: Here, we demonstrate that this response is characterized by enhanced membrane internalization through macropinocytosis, but not clathrin-mediated endocytosis. We show that UNC5A, UNC5B, and UNC5C receptors form a protein complex with the t-SNARE syntaxin-1. By combining botulinum neurotoxins, an shRNA knock-down strategy and Stx1 knock-out mice, we demonstrate that this SNARE protein is required for Netrin1-induced macropinocytosis and chemorepulsion, suggesting that Stx1 is crucial in regulating Netrin-1-mediated axonal guidance.

6.
J Neurosci ; 31(41): 14463-80, 2011 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-21994363

RESUMO

Directed cell migration and axonal guidance are essential steps in neural development. Both processes are controlled by specific guidance cues that activate the signaling cascades that ultimately control cytoskeletal dynamics. Another essential step in migration and axonal guidance is the regulation of plasmalemma turnover and exocytosis in leading edges and growth cones. However, the cross talk mechanisms linking guidance receptors and membrane exocytosis are not understood. Netrin-1 is a chemoattractive cue required for the formation of commissural pathways. Here, we show that the Netrin-1 receptor deleted in colorectal cancer (DCC) forms a protein complex with the t-SNARE (target SNARE) protein Syntaxin-1 (Sytx1). This interaction is Netrin-1 dependent both in vitro and in vivo, and requires specific Sytx1 and DCC domains. Blockade of Sytx1 function by using botulinum toxins abolished Netrin-1-dependent chemoattraction of axons in mouse neuronal cultures. Similar loss-of-function experiments in the chicken spinal cord in vivo using dominant-negative Sytx1 constructs or RNAi led to defects in commissural axon pathfinding reminiscent to those described in Netrin-1 and DCC loss-of-function models. We also show that Netrin-1 elicits exocytosis at growth cones in a Sytx1-dependent manner. Moreover, we demonstrate that the Sytx1/DCC complex associates with the v-SNARE (vesicle SNARE) tetanus neurotoxin-insensitive vesicle-associated membrane protein (TI-VAMP) and that knockdown of TI-VAMP in the commissural pathway in the spinal cord results in aberrant axonal guidance phenotypes. Our data provide evidence of a new signaling mechanism that couples chemotropic Netrin-1/DCC axonal guidance and Sytx1/TI-VAMP SNARE proteins regulating membrane turnover and exocytosis.


Assuntos
Exocitose/fisiologia , Cones de Crescimento/fisiologia , Fatores de Crescimento Neural/metabolismo , Neurônios/citologia , Receptores de Superfície Celular/metabolismo , Proteínas SNARE/metabolismo , Transdução de Sinais/genética , Proteínas Supressoras de Tumor/metabolismo , Análise de Variância , Animais , Animais Recém-Nascidos , Axônios/efeitos dos fármacos , Axônios/fisiologia , Compostos de Boro/metabolismo , Toxinas Botulínicas Tipo A/farmacologia , Fator Neurotrófico Derivado do Encéfalo/farmacologia , Células Cultivadas , Quimiotaxia/efeitos dos fármacos , Chlorocebus aethiops , Complemento C1/farmacologia , Receptor DCC , Embrião de Mamíferos , Exocitose/efeitos dos fármacos , Exocitose/genética , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Cones de Crescimento/efeitos dos fármacos , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Hipocampo/citologia , Humanos , Imunoprecipitação , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Proteínas Munc18/genética , Proteínas Munc18/metabolismo , Fatores de Crescimento Neural/genética , Proteínas do Tecido Nervoso/metabolismo , Netrina-1 , Fármacos Neuromusculares/farmacologia , Técnicas de Cultura de Órgãos , Receptores de Superfície Celular/genética , Proteínas SNARE/genética , Transdução de Sinais/efeitos dos fármacos , Ressonância de Plasmônio de Superfície/métodos , Toxina Tetânica/farmacologia , Transfecção/métodos , Proteínas Supressoras de Tumor/genética , Proteína 2 Associada à Membrana da Vesícula/metabolismo
7.
Eur J Neurosci ; 36(9): 3152-64, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22946563

RESUMO

Directed cell migration and axonal guidance are essential steps in neural development that share many molecular mechanisms. The guidance of developing axons and migrating neurons is likely to depend on the precise control of plasmalemma turnover in selected regions of leading edges and growth cones, respectively. Previous results provided evidence of a signaling mechanism that couples chemotropic deleted in colorectal cancer (DCC)/Netrin-1 axonal guidance and exocytosis through Syntaxin1(Sytx1)/TI-VAMP SNARE proteins. Here we studied whether Netrin-1-dependent neuronal migration relies on a similar SNARE mechanism. We show that migrating neurons in the lower rhombic lip (LRL) express several SNARE proteins, and that DCC co-associates with Sytx1 and TI-VAMP in these cells. We also demonstrate that cleavage of Sytx1 by botulinum toxin C1 (BoNT/C1) abolishes Netrin-1-dependent chemoattraction of migrating neurons, and that interference of Sytx1 functions with shRNAs or Sytx1-dominant negatives disrupts Netrin-1-dependent chemoattraction of LRL neurons. These findings indicate that a Sytx1/DCC interaction is required for Netrin-1 guidance of migrating neurons, thereby highlighting a relationship between guidance signaling and SNARE proteins that regulate membrane turnover.


Assuntos
Cerebelo/metabolismo , Quimiotaxia , Fatores de Crescimento Neural/metabolismo , Neurônios/metabolismo , Receptores de Superfície Celular/metabolismo , Sintaxina 1/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Toxinas Botulínicas/farmacologia , Cerebelo/citologia , Cerebelo/embriologia , Quimiotaxia/efeitos dos fármacos , Quimiotaxia/genética , Receptor DCC , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Fatores de Crescimento Neural/antagonistas & inibidores , Netrina-1 , RNA Interferente Pequeno , Receptores de Superfície Celular/genética , Transdução de Sinais , Sintaxina 1/genética , Proteínas Supressoras de Tumor/antagonistas & inibidores , Proteínas Supressoras de Tumor/genética , Proteína 2 Associada à Membrana da Vesícula/metabolismo
8.
Neurobiol Dis ; 37(3): 682-91, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20025970

RESUMO

Reelin is a glycoprotein that modulates synaptic function and plasticity in the mature brain, thereby favouring memory formation. We recently reported altered cerebral Reelin expression in Alzheimer's disease (AD). Here we demonstrate pronounced Reelin changes at protein and mRNA levels in the frontal cortex in adult Down's syndrome (DS), where the extra copy of chromosome 21 leads to overexpression of beta-amyloid. In cortical extracts of fetal DS samples we detected increased levels of the full-length Reelin and the 310-kDa fragment. Overexpression of mutant human amyloid precursor protein also led to an increase in levels of Reelin fragments in Tg2576 transgenic mice for human beta-amyloid. Finally, in vitro Abeta42 treatment of SH-SY5Y neuroblastoma cells led to increased Reelin levels. An altered pattern of Reelin glycosylation was detected in extracts from the frontal cortex of AD patients and in Abeta42-treated SH-SY5Y cells, supporting the notion that beta-amyloid triggers altered Reelin processing. These results provide evidence that Reelin expression and processing is altered in several amyloid conditions.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Moléculas de Adesão Celular Neuronais/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Serina Endopeptidases/metabolismo , Adulto , Idoso , Doença de Alzheimer/genética , Doença de Alzheimer/fisiopatologia , Peptídeos beta-Amiloides/genética , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Encéfalo/fisiopatologia , Moléculas de Adesão Celular Neuronais/genética , Linhagem Celular Tumoral , Cromossomos Humanos Par 21/genética , Síndrome de Down/genética , Síndrome de Down/metabolismo , Síndrome de Down/fisiopatologia , Proteínas da Matriz Extracelular/genética , Feminino , Feto , Regulação da Expressão Gênica/fisiologia , Glicosilação , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Proteínas do Tecido Nervoso/genética , Plasticidade Neuronal/genética , Placa Amiloide/genética , Placa Amiloide/metabolismo , Placa Amiloide/patologia , RNA Mensageiro/metabolismo , Proteína Reelina , Serina Endopeptidases/genética , Sinapses/metabolismo , Regulação para Cima/genética
9.
Front Neuroanat ; 13: 3, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30833889

RESUMO

The metallic impregnation invented by Camillo Golgi in 1873 has allowed the visualization of individual neurons in their entirety, leading to a breakthrough in the knowledge on the structure of the nervous system. Professor of Histology and of General Pathology, Golgi worked for decades at the University of Pavia, leading a very active laboratory. Unfortunately, most of Golgi's histological preparations are lost. The present contribution provides an account of the original slides on the nervous system from Golgi's laboratory available nowadays at the Golgi Museum and Historical Museum of the University of Pavia. Knowledge on the organization of the nervous tissue at the time of Golgi's observations is recalled. Notes on the equipment of Golgi's laboratory and the methodology Golgi used for his preparations are presented. Images of neurons from his slides (mostly from hippocampus, neocortex and cerebellum) are here shown for the first time together with some of Golgi's drawings. The sections are stained with the Golgi impregnation and Cajal stain. Golgi-impregnated sections are very thick (some more than 150 µm) and require continuous focusing during the microscopic observation. Heterogeneity of neuronal size and shape, free endings of distal dendritic arborizations, axonal branching stand out at the microscopic observation of Golgi-impregnated sections and in Golgi's drawings, and were novel findings at his time. Golgi also pointed out that the axon only originates from cell bodies, representing a constant and distinctive feature of nerve cells which distinguishes them from glia, and subserving transmission at a distance. Dendritic spines can be seen in some cortical neurons, although Golgi, possibly worried about artifacts, did not identify them. The puzzling intricacy of fully impregnated nervous tissue components offered to the first microscopic observations still elicit nowadays the emotion Golgi must have felt looking at his slides.

10.
Front Neuroanat ; 12: 13, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29535612

RESUMO

Neuron populations of the lateral hypothalamus which synthesize the orexin (OX)/hypocretin or melanin-concentrating hormone (MCH) peptides play crucial, reciprocal roles in regulating wake stability and sleep. The disease human African trypanosomiasis (HAT), also called sleeping sickness, caused by extracellular Trypanosoma brucei (T. b.) parasites, leads to characteristic sleep-wake cycle disruption and narcoleptic-like alterations of the sleep structure. Previous studies have revealed damage of OX and MCH neurons during systemic infection of laboratory rodents with the non-human pathogenic T. b. brucei subspecies. No information is available, however, on these peptidergic neurons after systemic infection with T. b. gambiense, the etiological agent of 97% of HAT cases. The present study was aimed at the investigation of immunohistochemically characterized OX and MCH neurons after T. b. gambiense or T. b. brucei infection of a susceptible rodent, the multimammate mouse, Mastomysnatalensis. Cell counts and evaluation of OX fiber density were performed at 4 and 8 weeks post-infection, when parasites had entered the brain parenchyma from the periphery. A significant decrease of OX neurons (about 44% reduction) and MCH neurons (about 54% reduction) was found in the lateral hypothalamus and perifornical area at 8 weeks in T. b. gambiense-infected M. natalensis. A moderate decrease (21% and 24% reduction, respectively), which did not reach statistical significance, was found after T. b. brucei infection. In two key targets of diencephalic orexinergic innervation, the peri-suprachiasmatic nucleus (SCN) region and the thalamic paraventricular nucleus (PVT), densitometric analyses showed a significant progressive decrease in the density of orexinergic fibers in both infection paradigms, and especially during T. b. gambiense infection. Altogether the findings provide novel information showing that OX and MCH neurons are highly vulnerable to chronic neuroinflammatory signaling caused by the infection of human-pathogenic African trypanosomes.

11.
Neural Regen Res ; 13(3): 386-392, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29623913

RESUMO

Through complex mechanisms that guide axons to the appropriate routes towards their targets, axonal growth and guidance lead to neuronal system formation. These mechanisms establish the synaptic circuitry necessary for the optimal performance of the nervous system in all organisms. Damage to these networks can be repaired by neuroregenerative processes which in turn can re-establish synapses between injured axons and postsynaptic terminals. Both axonal growth and guidance and the neuroregenerative response rely on correct axonal growth and growth cone responses to guidance cues as well as correct synapses with appropriate targets. With this in mind, parallels can be drawn between axonal regeneration and processes occurring during embryonic nervous system development. However, when studying parallels between axonal development and regeneration many questions still arise; mainly, how do axons grow and synapse with their targets and how do they repair their membranes, grow and orchestrate regenerative responses after injury. Major players in the cellular and molecular processes that lead to growth cone development and movement during embryonic development are the Soluble N-ethylamaleimide Sensitive Factor (NSF) Attachment Protein Receptor (SNARE) proteins, which have been shown to be involved in axonal growth and guidance. Their involvement in axonal growth, guidance and neuroregeneration is of foremost importance, due to their roles in vesicle and membrane trafficking events. Here, we review the recent literature on the involvement of SNARE proteins in axonal growth and guidance during embryonic development and neuroregeneration.

12.
Oncotarget ; 9(89): 35922-35940, 2018 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-30542508

RESUMO

SNARE proteins are essential components of the machinery that regulates vesicle trafficking and exocytosis. Their role is critical for the membrane-fusion processes that occur during neurotransmitter release. However, research in the last decade has also unraveled the relevance of these proteins in membrane expansion and cytoskeletal rearrangements during developmental processes such as neuronal migration and growth cone extension and attraction. Neurotrophins are neurotrophic factors that are required for many cellular functions throughout the brain, including neurite outgrowth and guidance, synaptic formation, and plasticity. Here we show that neurotrophin Trk receptors form a specific protein complex with the t-SNARE protein Syntaxin 1, both in vivo and in vitro. We also demonstrate that blockade of Syntaxin 1 abolishes neurotrophin-dependent growth of axons in neuronal cultures and decreases exocytotic events at the tip of axonal growth cones. 25-kDa soluble N-ethylmaleimide-sensitive factor attachment protein and Vesicle-associated membrane protein 2 do not participate in the formation of this SNARE complex, while tetanus neurotoxin-insensitive vesicle-associated membrane protein interacts with Trk receptors; knockdown of this (v) SNARE impairs Trk-dependent outgrowth. Taken together, our results support the notion that an atypical SNARE complex comprising Syntaxin 1 and tetanus neurotoxin-insensitive vesicle-associated membrane protein is required for axonal neurotrophin function.

13.
Ann Transplant ; 23: 144-152, 2018 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-29483486

RESUMO

BACKGROUND Heart transplantation is a therapeutic option for patients with severe coronary artery disease or heart failure. One of the difficulties to overcome is the apoptosis of cardiomyocytes in the donor organ. To prevent apoptosis in the donor organ, we developed a fusion protein containing FLIP (FADD-like interleukin beta-converting enzyme (FLICE)-like inhibitory protein) to inhibit caspase-8. MATERIAL AND METHODS We linked the cDNA coding for the FLIP protein to the transduction domain of HIV (human immunodeficiency virus) to allow the protein to enter cells. The recombinant protein was used at two different concentrations, 3 nM and 30 nM, for treatment of the donor heart in rat transplantation experiments. After transplantation, apoptosis was measured by ELISA, and the levels of active caspase-3, caspase-8, Bid, and PUMA were determined by western blotting using specific antibodies. RESULTS We observed that treatment of the donor organ with a solution containing this protein reduced the apoptosis level in the donor organ after 30 minutes post-transplantation as measured by the total of apoptotic cells with ELISA assay, and caspase-8 and caspase-3 activation and decreased levels of BH3-only proteins such as Bid and PUMA. Furthermore, this treatment also reduced the total tyrosine phosphorylation levels, which may be a possible measurement of lower oxidative stress levels in cardiomyocytes. CONCLUSIONS Protein FLIP solution reduced apoptosis at 30 minutes post-transplantation and decreased levels of several regulators of apoptosis.


Assuntos
Apoptose/efeitos dos fármacos , Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD/administração & dosagem , Soluções Cardioplégicas , Transplante de Coração/métodos , Coração/efeitos dos fármacos , Animais , Proteínas Reguladoras de Apoptose/metabolismo , Proteína Agonista de Morte Celular de Domínio Interatuante com BH3/metabolismo , Caspase 3/metabolismo , Caspase 8/metabolismo , Masculino , Miocárdio/metabolismo , Fosforilação/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley
14.
Dev Neurobiol ; 77(8): 963-974, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28033683

RESUMO

Axonal growth and guidance rely on correct growth cone responses to guidance cues, both in the central nervous system (CNS) and in the periphery. Unlike the signaling cascades that link axonal growth to cytoskeletal dynamics, little is known about the cross-talk mechanisms between guidance and membrane dynamics and turnover in the axon. Our studies have shown that Netrin-1/deleted in colorectal cancer signaling triggers exocytosis through the SNARE Syntaxin-1 (STX-1) during the formation of commissural pathways. However, limited in vivo evidence is available about the role of SNARE proteins in motor axonal guidance. Here we show that loss-of-function of SNARE complex members results in motor axon guidance defects in fly and chick embryos. Knock-down of Syntaxin-1, VAMP-2, and SNAP-25 leads to abnormalities in the motor axon routes out of the CNS. Our data point to an evolutionarily conserved role of the SNARE complex proteins in motor axon guidance, thereby pinpointing an important function of SNARE proteins in axonal navigation in vivo. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 77: 963-974, 2017.


Assuntos
Proteínas Aviárias/metabolismo , Axônios/metabolismo , Proteínas de Drosophila/metabolismo , Neurônios Motores/metabolismo , Crescimento Neuronal/fisiologia , Proteínas SNARE/metabolismo , Animais , Embrião de Galinha , Drosophila melanogaster , Imuno-Histoquímica , Especificidade da Espécie
15.
J Neurosci ; 23(9): 3566-71, 2003 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-12736326

RESUMO

Total lack of visual experience [dark rearing (DR)] is known to prolong the critical period and delay development of sensory functions in mammalian visual cortex. Recent results show that neurotrophins (NTs) counteract the effects of DR on functional properties of visual cortical cells and exert a strong control on critical period duration. NTs are known to modulate the development and synaptic efficacy of neurotransmitter systems that are affected by DR. However, it is still unknown whether the actions of NTs in dark-reared animals involve interaction with neurotransmitter systems. We have studied the effects of DR on the expression of key molecules in the glutamatergic and GABAergic systems in control and NT-treated animals. We have found that DR reduced the expression of the NMDA receptor 2A subunit and its associated protein PSD-95 (postsynaptic density-95), of GRIP (AMPA glutamate receptor interacting protein), and of the biosynthetic enzyme GAD (glutamic acid decarboxylase). Returning dark-reared animals to light for 2 hr restored normal expression of the above-mentioned proteins almost completely. NT treatment specifically counteracts DR effects; NGF acts primarily on the NMDA system, whereas BDNF acts primarily on the GABAergic system. Finally, the action of NT4 seems to involve both excitatory and inhibitory systems. These data demonstrate that different NTs counteract DR effects by modulating the expression of key molecules of the excitatory and inhibitory neurotransmitter systems.


Assuntos
Escuridão , Fatores de Crescimento Neural/farmacologia , Proteínas/metabolismo , Sinapses/metabolismo , Córtex Visual/metabolismo , Animais , Fator Neurotrófico Derivado do Encéfalo/farmacologia , Proteínas de Transporte/metabolismo , Densitometria , Proteína 4 Homóloga a Disks-Large , Glutamato Descarboxilase/metabolismo , Immunoblotting , Peptídeos e Proteínas de Sinalização Intracelular , Isoenzimas/metabolismo , Luz , Proteínas de Membrana , Fator de Crescimento Neural/farmacologia , Proteínas do Tecido Nervoso/metabolismo , Neurotransmissores/metabolismo , Estimulação Luminosa , Ratos , Ratos Long-Evans , Receptores de Glutamato/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Privação Sensorial/fisiologia , Sinapses/efeitos dos fármacos , Córtex Visual/efeitos dos fármacos
16.
PLoS One ; 10(3): e0119707, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25803850

RESUMO

Glioblastoma (GBM) is the most prevalent adult brain tumor, with virtually no cure, and with a median overall survival of 15 months from diagnosis despite of the treatment. SNARE proteins mediate membrane fusion events in cells and are essential for many cellular processes including exocytosis and neurotransmission, intracellular trafficking and cell migration. Here we show that the blockade of the SNARE protein Syntaxin 1 (Stx1) function impairs GBM cell proliferation. We show that Stx1 loss-of-function in GBM cells, through ShRNA lentiviral transduction, a Stx1 dominant negative and botulinum toxins, dramatically reduces the growth of GBM after grafting U373 cells into the brain of immune compromised mice. Interestingly, Stx1 role on GBM progression may not be restricted just to cell proliferation since the blockade of Stx1 also reduces in vitro GBM cell invasiveness suggesting a role in several processes relevant for tumor progression. Altogether, our findings indicate that the blockade of SNARE proteins may represent a novel therapeutic tool against GBM.


Assuntos
Toxinas Botulínicas/farmacologia , Proliferação de Células/efeitos dos fármacos , Glioblastoma/fisiopatologia , RNA Interferente Pequeno/farmacologia , Sintaxina 1/antagonistas & inibidores , Animais , Western Blotting , Bromodesoxiuridina , Linhagem Celular Tumoral , Citometria de Fluxo , Glioblastoma/tratamento farmacológico , Humanos , Lentivirus , Camundongos , Invasividade Neoplásica/prevenção & controle , RNA Interferente Pequeno/genética , Estatísticas não Paramétricas , Transdução Genética/métodos
17.
Eur J Neurosci ; 16(10): 1925-30, 2002 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-12453056

RESUMO

Total lack of visual experience (dark rearing, DR) is known to affect development of mammalian visual cortex (VC) and to prolong the critical period of visual cortical plasticity. Neurotrophins (NTs) have been proposed to play a relevant role in activity dependent processes important for the final shaping of cortical visual connections. Neurotrophin supply or antagonism of endogenous NT action profoundly affect visual cortical development and plasticity; in particular, exogenous supply of NTs counteracts DR effects on VC development. However, the effects of DR on NT expression are still debated and mounting evidence reports a mismatch between BDNF mRNA and protein expression in DR animals. To gain insight into the effects of DR on expression of nerve growth factor (NGF) and the functional state of NT signalling pathways, we assessed the phosphorylation state of Trk receptors in light-reared animals (LR), in dark-reared animals (DR), in DR animals briefly exposed to light and in DR animals with exogenous supply of NTs [NGF, brain-derived neurotrophic factor (BDNF) and NT-4] in the VC. We report that DR increases the expression of NGF but reduces the phosphorylation of TrkA and TrkB receptors with respect to LR; normal phosphorylation is rapidly rescued by a brief exposure to light. Exogenous supply of NGF, BDNF or NT4 in DR animals also rescues the phosphorylation of their receptors.


Assuntos
Escuridão/efeitos adversos , Fator de Crescimento Neural/metabolismo , Receptor trkA/metabolismo , Receptor trkB/metabolismo , Privação Sensorial , Córtex Visual/metabolismo , Animais , Animais Recém-Nascidos , Fator Neurotrófico Derivado do Encéfalo/farmacologia , Ensaio de Imunoadsorção Enzimática , Immunoblotting , Fator de Crescimento Neural/farmacologia , Fatores de Crescimento Neural/farmacologia , Fosforilação/efeitos dos fármacos , Estimulação Luminosa , Testes de Precipitina , Ratos , Ratos Long-Evans , Receptor trkA/efeitos dos fármacos , Receptor trkB/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Regulação para Cima/efeitos dos fármacos , Córtex Visual/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA