Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(23)2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-34078669

RESUMO

Vaccine adjuvants enhance and prolong pathogen-specific protective immune responses. Recent reports indicate that host factors-such as aging, pregnancy, and genetic polymorphisms-influence efficacies of vaccines adjuvanted with Toll-like receptor (TLR) or known pattern-recognition receptor (PRR) agonists. Although PRR independent adjuvants (e.g., oil-in-water emulsion and saponin) are emerging, these adjuvants induce some local and systemic reactogenicity. Hence, new TLR and PRR-independent adjuvants that provide greater potency alone or in combination without compromising safety are highly desired. Previous cell-based high-throughput screenings yielded a small molecule 81 [N-(4-chloro-2,5-dimethoxyphenyl)-4-ethoxybenzenesulfonamide], which enhanced lipopolysaccharide-induced NF-κB and type I interferon signaling in reporter assays. Here compound 81 activated innate immunity in primary human peripheral blood mononuclear cells and murine bone marrow-derived dendritic cells (BMDCs). The innate immune activation by 81 was independent of TLRs and other PRRs and was significantly reduced in mitochondrial antiviral-signaling protein (MAVS)-deficient BMDCs. Compound 81 activities were mediated by mitochondrial dysfunction as mitophagy inducers and a mitochondria specific antioxidant significantly inhibited cytokine induction by 81. Both compound 81 and a derivative obtained via structure-activity relationship studies, 2F52 [N-benzyl-N-(4-chloro-2,5-dimethoxyphenyl)-4-ethoxybenzenesulfonamide] modestly increased mitochondrial reactive oxygen species and induced the aggregation of MAVS. Neither 81 nor 2F52 injected as adjuvants caused local or systemic toxicity in mice at effective concentrations for vaccination. Furthermore, vaccination with inactivated influenza virus adjuvanted with 2F52 demonstrated protective effects in a murine lethal virus challenge study. As an unconventional and safe adjuvant that does not require known PRRs, compound 2F52 could be a useful addition to vaccines.


Assuntos
Adjuvantes Imunológicos/farmacologia , Vacinas contra Influenza/farmacologia , Influenza Humana/imunologia , Mitocôndrias/efeitos dos fármacos , Infecções por Orthomyxoviridae/imunologia , Animais , Anticorpos Antivirais/imunologia , Células Dendríticas/imunologia , Feminino , Expressão Gênica , Humanos , Imunidade Inata/efeitos dos fármacos , Vacinas contra Influenza/imunologia , Leucócitos Mononucleares/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Mitocôndrias/genética , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Estresse Fisiológico , Receptores Toll-Like
2.
Bioorg Med Chem ; 43: 116242, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34274759

RESUMO

In the face of emerging infectious diseases, there remains an unmet need for vaccine development where adjuvants that enhance immune responses to pathogenic antigens are highly desired. Using high-throughput screens with a cell-based nuclear factor κB (NF-κB) reporter assay, we identified a sulfamoyl benzamidothiazole bearing compound 1 that demonstrated a sustained activation of NF-κB after a primary stimulus with a Toll-like receptor (TLR)-4 agonist, lipopolysaccharide (LPS). Here, we explore systematic structure-activity relationship (SAR) studies on compound 1 that indicated the sites on the scaffold that tolerated modification and yielded more potent compounds compared to 1. The selected analogs enhanced release of immunostimulatory cytokines in the human monocytic cell line THP-1 cells and murine primary dendritic cells. In murine vaccination studies, select compounds were used as co-adjuvants in combination with the Food and Drug Administration approved TLR-4 agonistic adjuvant, monophosphoryl lipid A (MPLA) that showed significant enhancement in antigen-specific antibody titers compared to MPLA alone. Additionally, our SAR studies led to identification of a photoaffinity probe which will aid the target identification and mechanism of action studies in the future.


Assuntos
Benzamidas/farmacologia , NF-kappa B/metabolismo , Tiazóis/farmacologia , Animais , Benzamidas/química , Linhagem Celular , Relação Dose-Resposta a Droga , Humanos , Camundongos , Estrutura Molecular , Relação Estrutura-Atividade , Tiazóis/química
3.
Bioorg Med Chem Lett ; 30(3): 126840, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31864800

RESUMO

Toll-like receptors (TLRs) are a type of pattern recognition receptors (PRRs), which are activated by recognizing pathogen-associated molecular patterns (PAMPs). The activation of TLRs initiates innate immune responses and subsequently leads to adaptive immune responses. TLR agonists are effective immuomodulators in vaccine adjuvants for infectious diseases and cancer immunotherapy. In exploring hydrophilic small molecules of TLR7 ligands using the cell-targeted property of a vaccine adjuvant, we conjugated 1V209, a small TLR7 ligand molecule, with various low or middle molecular weight sugar molecules that work as carriers. The sugar-conjugated 1V209 derivatives showed increased water solubility and higher immunostimulatory activity in both mouse and human cells compared to unmodified 1V209. The improved immunostimulatory potency of sugar-conjugates was attenuated by an inhibitor of endocytic process, cytochalasin D, suggesting that conjugation of sugar moieties may enhance the uptake of TLR7 ligand into the endosomal compartment. Collectively our results support that sugar-conjugated TLR7 ligands are applicable to novel drugs for cancer and vaccine therapy.


Assuntos
Adjuvantes Imunológicos/síntese química , Ligantes , Monossacarídeos/química , Receptor 7 Toll-Like/agonistas , Adjuvantes Imunológicos/metabolismo , Adjuvantes Imunológicos/farmacologia , Animais , Sítios de Ligação , Linhagem Celular , Dimerização , Humanos , Interleucina-6/metabolismo , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Simulação de Acoplamento Molecular , Estrutura Terciária de Proteína , Células RAW 264.7 , Relação Estrutura-Atividade , Receptor 7 Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
4.
Bioconjug Chem ; 30(11): 2811-2821, 2019 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-31560198

RESUMO

Adjuvants enhance the immune response during vaccination. Among FDA-approved adjuvants, aluminum salts are most commonly used in vaccines. Although aluminum salts enhance humoral immunity, they show a limited effect for cell-mediated immune responses. Thus, further development of adjuvants that induce T-cell-mediated immune response is needed. Toll-like receptors (TLRs) recognizing specific pathogen-associated molecular patterns activate innate immunity, which is crucial to shape adaptive immunity. Using TLR ligands as novel adjuvants in vaccines has therefore attracted substantial attention. Among them a small molecule TLR7 ligand, imiquimod, has been approved for clinical use, but its use is restricted to local administration due to unwanted adverse side effects when used systematically. Since TLR7 is mainly located in the endosomal compartment of immune cells, efficient transport of the ligand into the cells is important for improving the potency of the TLR7 ligand. In this study we examined gold nanoparticles (GNPs) immobilized with α-mannose as carriers for a TLR7 ligand to target immune cells. The small molecule synthetic TLR7 ligand, 2-methoxyethoxy-8-oxo-9-(4-carboxy benzyl)adenine (1V209), and α-mannose were coimmobilized via linker molecules consisting of thioctic acid on the GNP surface (1V209-αMan-GNPs). The in vitro cytokine production activity of 1V209-αMan-GNPs was higher than that of the unconjugated 1V209 derivative in mouse bone marrow-derived dendritic cells and in human peripheral blood mononuclear cells. In the in vivo immunization study, 1V209-αMan-GNPs induced significantly higher titers of IgG2c antibody specific to ovalbumin as an antigen than did unconjugated 1V209, and splenomegaly and weight loss were not observed. These results indicate that 1V209-αMan-GNPs could be useful as safe and effective adjuvants for development of vaccines against infectious diseases and cancer.


Assuntos
Adenina/análogos & derivados , Adjuvantes Imunológicos/farmacologia , Ouro/química , Manose/química , Nanopartículas Metálicas/administração & dosagem , Bibliotecas de Moléculas Pequenas/farmacologia , Esplenomegalia/prevenção & controle , Receptor 7 Toll-Like/agonistas , Adenina/química , Adenina/farmacologia , Adjuvantes Imunológicos/química , Animais , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/imunologia , Células da Medula Óssea/metabolismo , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Humanos , Imunização , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Ligantes , Nanopartículas Metálicas/química , Camundongos , Camundongos Endogâmicos C57BL , Ovalbumina/imunologia , Bibliotecas de Moléculas Pequenas/química , Esplenomegalia/imunologia , Esplenomegalia/patologia , Receptor 7 Toll-Like/imunologia
5.
J Virol ; 91(19)2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28724768

RESUMO

We previously demonstrated that the combination of synthetic small-molecule Toll-like receptor 4 (TLR4) and TLR7 ligands is a potent adjuvant for recombinant influenza virus hemagglutinin, inducing rapid and sustained immunity that is protective against influenza viruses in homologous, heterologous, and heterosubtypic murine challenge models. Combining the TLR4 and TLR7 ligands balances Th1 and Th2-type immune responses for long-lived cellular and neutralizing humoral immunity against the viral hemagglutinin. Here, we demonstrate that the protective response induced in mice by this combined adjuvant is dependent upon TLR4 and TLR7 signaling via myeloid differentiation primary response gene 88 (MyD88), indicating that the adjuvants function in vivo via their known receptors, with negligible off-target effects, to induce protective immunity. The combined adjuvant acts via MyD88 in both bone marrow-derived and non-bone marrow-derived radioresistant cells to induce hemagglutinin-specific antibodies and protect mice against influenza virus challenge. The protective efficacy generated by immunization with this adjuvant and recombinant hemagglutinin antigen is transferable with serum from immunized mice to recipient mice in a homologous, but not a heterologous, H1N1 viral challenge model. Depletion of CD4+ cells after an established humoral response in immunized mice does not impair protection from a homologous challenge; however, it does significantly impair recovery from a heterologous challenge virus, highlighting an important role for vaccine-induced CD4+ cells in cross-protective vaccine efficacy. The combination of the two TLR agonists allows for significant dose reductions of each component to achieve a level of protection equivalent to that afforded by either single agent at its full dose.IMPORTANCE Development of novel adjuvants is needed to enhance immunogenicity to provide better protection from seasonal influenza virus infection and improve pandemic preparedness. We show here that several dose combinations of synthetic TLR4 and TLR7 ligands are potent adjuvants for recombinant influenza virus hemagglutinin antigen induction of humoral and cellular immunity against viral challenges. The components of the combined adjuvant work additively to enable both antigen and adjuvant dose sparing while retaining efficacy. Understanding an adjuvant's mechanism of action is a critical component for preclinical safety evaluation, and we demonstrate here that a combined TLR4 and TLR7 adjuvant signals via the appropriate receptors and the MyD88 adaptor protein. This novel adjuvant combination contributes to a more broadly protective vaccine while demonstrating an attractive safety profile.


Assuntos
Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Vírus da Influenza A Subtipo H1N1/imunologia , Glicoproteínas de Membrana/imunologia , Fator 88 de Diferenciação Mieloide/imunologia , Infecções por Orthomyxoviridae/imunologia , Receptor 4 Toll-Like/imunologia , Receptor 7 Toll-Like/imunologia , Proteínas Adaptadoras de Transporte Vesicular/genética , Adjuvantes Imunológicos/farmacologia , Animais , Anticorpos Antivirais/imunologia , Antígenos Virais/imunologia , Feminino , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Vacinas contra Influenza/imunologia , Pulmão/imunologia , Pulmão/virologia , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator 88 de Diferenciação Mieloide/genética , Infecções por Orthomyxoviridae/prevenção & controle , Infecções por Orthomyxoviridae/virologia , Células Th1/imunologia , Células Th2/imunologia , Receptor 4 Toll-Like/genética , Receptor 7 Toll-Like/genética , Vacinação
6.
J Virol ; 89(6): 3221-35, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25568203

RESUMO

UNLABELLED: Current vaccines against influenza virus infection rely on the induction of neutralizing antibodies targeting the globular head of the viral hemagglutinin (HA). Protection against seasonal antigenic drift or sporadic pandemic outbreaks requires further vaccine development to induce cross-protective humoral responses, potentially to the more conserved HA stalk region. Here, we present a novel viral vaccine adjuvant comprised of two synthetic ligands for Toll-like receptor 4 (TLR4) and TLR7. 1Z105 is a substituted pyrimido[5,4-b]indole specific for the TLR4-MD2 complex, and 1V270 is a phospholipid-conjugated TLR7 agonist. Separately, 1Z105 induces rapid Th2-associated IgG1 responses, and 1V270 potently generates Th1 cellular immunity. 1Z105 and 1V270 in combination with recombinant HA from the A/Puerto Rico/8/1934 strain (rPR/8 HA) effectively induces rapid and sustained humoral immunity that is protective against lethal challenge with a homologous virus. More importantly, immunization with the combined adjuvant and rPR/8 HA, a commercially available split vaccine, or chimeric rHA antigens significantly improves protection against both heterologous and heterosubtypic challenge viruses. Heterosubtypic protection is associated with broadly reactive antibodies to HA stalk epitopes. Histological examination and cytokine profiling reveal that intramuscular (i.m.) administration of 1Z105 and 1V270 is less reactogenic than a squalene-based adjuvant, AddaVax. In summary, the combination of 1Z105 and 1V270 with a recombinant HA induces rapid, long-lasting, and balanced Th1- and Th2-type immunity; demonstrates efficacy in a variety of murine influenza virus vaccine models assaying homologous, heterologous, and heterosubtypic challenge viruses; and has an excellent safety profile. IMPORTANCE: Novel adjuvants are needed to enhance immunogenicity and increase the protective breadth of influenza virus vaccines to reduce the seasonal disease burden and ensure pandemic preparedness. We show here that the combination of synthetic Toll-like receptor 4 (TLR4) and TLR7 ligands is a potent adjuvant for recombinant influenza virus hemagglutinin, inducing rapid and sustained immunity that is protective against influenza viruses in homologous, heterologous, and heterosubtypic challenge models. Combining TLR4 and TLR7 ligands balances Th1- and Th2-type immune responses for long-lived cellular and neutralizing humoral immunity against the viral hemagglutinin. The combined adjuvant has an attractive safety profile and the potential to augment seasonal-vaccine breadth, contribute to a broadly neutralizing universal vaccine formulation, and improve response time in an emerging pandemic.


Assuntos
Adjuvantes Imunológicos/administração & dosagem , Proteção Cruzada , Vírus da Influenza A Subtipo H1N1/imunologia , Vacinas contra Influenza/imunologia , Influenza Humana/imunologia , Receptor 4 Toll-Like/agonistas , Receptor 7 Toll-Like/agonistas , Adjuvantes Imunológicos/síntese química , Animais , Anticorpos Antivirais/imunologia , Humanos , Vacinas contra Influenza/administração & dosagem , Influenza Humana/virologia , Ligantes , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Células Th1/imunologia , Células Th2/imunologia , Receptor 4 Toll-Like/imunologia , Receptor 7 Toll-Like/imunologia
7.
Bioconjug Chem ; 26(8): 1713-23, 2015 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-26193334

RESUMO

Toll-like receptors (TLRs) in the innate immune system recognize specific pathogen-associated molecular patterns derived from microbes. Synthetic small molecule TLR7 agonists have been extensively evaluated as topical agents for antiviral and anticancer therapy, and as adjuvants for vaccine. However, safe and reproducible administration of synthetic TLR7 ligands has been difficult to achieve due to undesirable pharmacokinetics and unacceptable side effects. Here, we conjugated a versatile low molecular weight TLR7 ligand to various polysaccharides in order to improve its water solubility, enhance its potency, and maintain low toxicity. The synthetic TLR7 ligand, 2-methoxyethoxy-8-oxo-9-(4-carboxy benzyl)adenine, designated 1V209, was stably conjugated to primary amine functionalized Ficoll or dextran using benzoic acid functional groups. The conjugation ratios using specified equivalents of TLR7 ligand were dose responsive and reproducible. The zeta potential value of the polysaccharides was decreased in inverse proportion to the ratio of conjugated TLR7 ligand. These conjugates were highly water-soluble, stable for at least 6 months at room temperature in aqueous solution, and easy to lyophilize and reconstitute without altering potency. In vitro studies with murine mononuclear leukocytes showed that the TLR7 agonist conjugated to polysaccharides had 10- to 1000-fold higher potencies than the unconjugated TLR7 ligand. In vivo pharmacodynamics studies after injection indicate that the conjugates induced systemic cytokine production. When the conjugates were used as vaccine adjuvants, they enhanced antigen specific humoral and cellular immune responses to a much greater extent than did unconjugated TLR7 ligands. These results indicated that small molecule TLR7 ligands conjugated to polysaccharides have improved immunostimulatory potency and pharmacodynamics. Polysaccharides can be conjugated to a variety of molecules such as antigens, peptides, and TLR ligands. Therefore, such conjugates could represent a versatile platform for the development of vaccines against cancer and infectious diseases.


Assuntos
Adjuvantes Imunológicos/administração & dosagem , Adjuvantes Imunológicos/química , Células Dendríticas/imunologia , Inflamação/imunologia , Macrófagos/imunologia , Polissacarídeos/química , Receptor 7 Toll-Like/fisiologia , Animais , Medula Óssea/efeitos dos fármacos , Medula Óssea/imunologia , Células Cultivadas , Citocinas/imunologia , Citocinas/metabolismo , Células Dendríticas/citologia , Células Dendríticas/efeitos dos fármacos , Feminino , Humanos , Imunização , Inflamação/tratamento farmacológico , Inflamação/patologia , Ligantes , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
8.
J Pharmacol Exp Ther ; 350(2): 330-40, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24893985

RESUMO

Toll-like receptor (TLR) stimulation has been implicated as a major contributor to chronic inflammation. Among these receptors, TLR4 has been described as a key regulator of endogenous inflammation and has been proposed as a therapeutic target. Previously, we discovered by high-throughput screening a group of substituted pyrimido[5,4-b]indoles that activated a nuclear factor-κB reporter in THP-1 human monocytic cells. A biologically active hit compound was resynthesized, and derivatives were prepared to assess structure-activity relationships. The derived compounds activated cells in a TLR4/myeloid differentiation protein 2 (MD2)-dependent and CD14-independent manner, using the myeloid differentiation primary response 88 and Toll/IL-1 receptor domain-containing adapter-inducing interferon-ß pathways. Two lead compounds, 1Z105 and 1Z88, were selected for further analysis based on favorable biologic properties and lack of toxicity. In vivo pharmacokinetics indicated that 1Z105 was orally bioavailable, whereas 1Z88 was not. Oral or parenteral doses of 1Z105 and 1Z88 induced undetectable or negligible levels of circulating cytokines and did not induce hepatotoxicity when administered to galactosamine-conditioned mice, indicating good safety profiles. Both compounds were very effective in preventing lethal liver damage in lipopolysaccharide treated galatosamine-conditioned mice. Orally administered 1Z105 and parenteral 1Z88 prevented arthritis in an autoantibody-driven murine model. Hence, these low molecular weight molecules that target TLR4/MD2 were well tolerated and effective in reducing target organ damage in two different mouse models of sterile inflammation.


Assuntos
Inflamação/tratamento farmacológico , Antígeno 96 de Linfócito/fisiologia , Receptor 4 Toll-Like/fisiologia , Animais , Artrite Experimental/prevenção & controle , Galactosamina/toxicidade , Células Hep G2 , Ensaios de Triagem em Larga Escala , Humanos , Ligantes , Receptores de Lipopolissacarídeos/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Fator 88 de Diferenciação Mieloide/fisiologia , Transdução de Sinais , Relação Estrutura-Atividade
9.
Bioorg Med Chem Lett ; 24(21): 4931-8, 2014 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-25288184

RESUMO

The Toll-like receptors (TLRs) are critical components of the innate immune system that regulate immune recognition in part through NF-κB activation. A human cell-based high throughput screen (HTS) revealed substituted 4-aminoquinazolines to be small molecular weight activators of NF-κB. The most potent hit compound predominantly stimulated through the human TLR4/MD2 complex, and had less activity with the mouse TLR4/MD2. There was no activity with other TLRs and the TLR4 activation was MD-2 dependent and CD14 independent. Synthetic modifications of the quinazoline scaffold at the 2 and 4 positions revealed trends in structure-activity relationships with respect to TLR dependent production of the NF-κB associated cytokine IL-8 in human peripheral blood mononuclear cells, as well as IL-6 in mouse antigen presenting cells. Furthermore, the hit compound in this series also activated the interferon signaling pathway resulting in type I interferon production. Substitution at the O-phenyl moiety with groups such as bromine, chlorine and methyl resulted in enhanced immunological activity. Computational studies indicated that the 4-aminoquinazoline compounds bind primarily to human MD-2 in the TLR4/MD-2 complex. These small molecules, which preferentially stimulate human rather than mouse innate immune cells, may be useful as adjuvants or immunotherapeutic agents.


Assuntos
Interleucina-6/metabolismo , Interleucina-8/metabolismo , Leucócitos Mononucleares/metabolismo , NF-kappa B/metabolismo , Quinazolinas/química , Receptor 4 Toll-Like/metabolismo , Receptores Toll-Like/metabolismo , Animais , Ensaios de Triagem em Larga Escala , Humanos , Imunidade Inata , Leucócitos Mononucleares/citologia , Ligantes , Camundongos , Modelos Moleculares , Estrutura Molecular , Quinazolinas/metabolismo , Transdução de Sinais , Relação Estrutura-Atividade
10.
Pharmaceutics ; 16(1)2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-38258117

RESUMO

Co-delivery of antigens and adjuvants to the same antigen-presenting cells (APCs) can significantly improve the efficacy and safety profiles of vaccines. Here, we report amine-grafted silica nanoparticles (A-SNP) as a tunable vaccine co-delivery platform for TLR7/8 agonists along with the recombinant influenza antigen hemagglutinin H7 (H7) to APCs. A-SNP of two different sizes (50 and 200 nm) were prepared and coated with INI-4001 at different coating densities, followed by co-adsorption of H7. Both INI-4001 and H7 showed >90% adsorption to the tested A-SNP formulations. TNF-α and IFN-α cytokine release by human peripheral blood mononuclear cells as well as TNF-α, IL-6, and IL-12 release by mouse bone marrow-derived dendritic cells revealed that the potency of the INI-4001-adsorbed A-SNP (INI-4001/A-SNP) formulations was improved relative to aqueous formulation control. This improved potency was dependent on particle size and ligand coating density. In addition, slow-release profiles of INI-4001 were measured from INI-4001/A-SNP formulations in plasma with 30-50% INI-4001 released after 7 days. In vivo murine immunization studies demonstrated significantly improved H7-specific humoral and Th1/Th17-polarized T cell immune responses with no observed adverse reactions. Low-density 50 nm INI-4001/A-SNP elicited significantly higher IFN-γ and IL-17 induction over that of the H7 antigen-only group and INI-4001 aqueous formulation controls. In summary, this work introduces an effective and biocompatible SNP-based co-delivery platform that enhances the immunogenicity of TLR7/8 agonist-adjuvanted subunit influenza vaccines.

11.
Proc Natl Acad Sci U S A ; 107(16): 7479-84, 2010 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-20368435

RESUMO

Recent studies show that redox-active small molecules are selectively cytotoxic to chronic lymphocytic leukemia (CLL). Although elevated levels of reactive oxygen species in CLL cells have been implicated, the molecular mechanism underlying this selectivity is unclear. In other cell types, the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway regulates the oxidative stress response. We found elevated Nrf2 signaling in untreated CLL cells compared with normal lymphocytes. Therefore, we tested 27 known electrophilic and antioxidant compounds with drug-like properties and determined their CLL-selective cytotoxicity and effect on Nrf2 signaling. The selected compounds were from five distinct structural classes; alpha-beta unsaturated carbonyls, isothiocyanates, sulfhydryl reactive metals, flavones, and polyphenols. Our results show that compounds containing alpha-beta unsaturated carbonyls, sulfhydryl reactive metals, and isothiocyanates are strong activators of Nrf2 in a reporter assay system and in primary human CLL based on increased expression of the Nrf2 target heme oxygenase-1. alpha-beta Unsaturated carbonyl-containing compounds were selectively cytotoxic to CLL, and loss of the alpha-beta unsaturation abrogated Nrf2 activity and CLL toxicity. The alpha-beta unsaturated carbonyl containing compounds ethacrynic acid and parthenolide activated Nrf2 in normal peripheral blood mononuclear cells, but had a less potent effect in CLL cells. Furthermore, ethacrynic acid bound directly to the Nrf2-negative regulator Kelch-like ECH-associated protein 1 (Keap1) in CLL cells. These experiments document the presence of Nrf2 signaling in human CLL and suggest that altered Nrf2 responses may contribute to the observed selective cytotoxicity of electrophilic compounds in this disease.


Assuntos
Antineoplásicos/farmacologia , Regulação Leucêmica da Expressão Gênica , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Leucemia Linfocítica Crônica de Células B/metabolismo , Fator 2 Relacionado a NF-E2/biossíntese , Antioxidantes/química , Linhagem Celular Tumoral , Flavonoides/química , Genes Reporter , Heme Oxigenase-1/biossíntese , Humanos , Leucócitos Mononucleares/metabolismo , Estresse Oxidativo , Fenóis/química , Reação em Cadeia da Polimerase , Polifenóis , Transdução de Sinais , Regulação para Cima
12.
ACS Chem Biol ; 18(4): 982-993, 2023 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-37039433

RESUMO

Extracellular vesicles (EVs) transfer antigens and immunomodulatory molecules in immunologic synapses as a part of intracellular communication, and EVs equipped with immunostimulatory functions have been utilized for vaccine formulation. Hence, we sought small-molecule compounds that increase immunostimulatory EVs released by antigen-presenting dendritic cells (DCs) for enhancement of vaccine immunogenicity. We previously performed high-throughput screening on a 28K compound library using three THP-1 reporter cell lines with CD63 Turbo-Luciferase, NF-κB, and interferon-sensitive response element (ISRE) reporter constructs, respectively. Because intracellular Ca2+ elevation enhances EV release, we screened 80 hit compounds and identified compound 634 as a Ca2+ influx inducer. 634 enhanced EV release in murine bone marrow-derived dendritic cells (mBMDCs) and increased costimulatory molecule expression on the surface of EVs and the parent cells. EVs isolated from 634-treated mBMDCs induced T cell proliferation in the presence of antigenic peptides. To assess the roles of intracellular Ca2+ elevation in immunostimulatory EV release, we performed structure-activity relationship (SAR) studies of 634. The analogues that retained the ability to induce Ca2+ influx induced more EVs with immunostimulatory properties from mBMDCs than did those that lacked the ability to induce Ca2+ influx. The levels of Ca2+ induction of synthesized analogues correlated with the numbers of EVs released and costimulatory molecule expression on the parent cells. Collectively, our study presents that a small molecule, 634, enhances the release of EVs with immunostimulatory potency via induction of Ca2+ influx. This agent is a novel tool for EV-based immune studies and vaccine development.


Assuntos
Cálcio , Vesículas Extracelulares , Fatores Imunológicos , Animais , Camundongos , Cálcio/metabolismo , Vesículas Extracelulares/efeitos dos fármacos , Vesículas Extracelulares/metabolismo , Imunização , Bibliotecas de Moléculas Pequenas , Imunogenicidade da Vacina/efeitos dos fármacos , Fatores Imunológicos/química
13.
Mediators Inflamm ; 2012: 262394, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22619481

RESUMO

Although the mechanisms for sustained chemokine gradients and recurring cell infiltration in sterile peritonitis have not been elucidated, toll-like receptors (TLRs) have been implicated. To abate the deleterious recruitment of neutrophils in sterile inflammation, we repeatedly administered a TLR7 ligand that hyposensitized to TLR7 and receptors that converged on the MyD88-signaling intermediary and reduced cellular infiltration in murine autoimmune models of multiple sclerosis and arthritis. To reduce potential adverse effects, a polyethylene glycol polymer was covalently attached to the parent compound (Tolerimod1). The proinflammatory potency of Tolerimod1 was 10-fold less than the unconjugated TLR7 ligand, and Tolerimod1 reduced neutrophil recruitment in chemically induced peritonitis and colitis. The effects of Tolerimod1 were mediated by the radioresistant cells in radiation chimeric mice and by mast cells in reconstituted mast cell-deficient mice (Kit(W-sh)). Although the Tolerimod1 had weak proinflammatory agonist activity, it effectively reduced neutrophil recruitment in sterile peritoneal inflammation.


Assuntos
Mastócitos/metabolismo , Glicoproteínas de Membrana/metabolismo , Neutrófilos/imunologia , Polietilenoglicóis/metabolismo , Polietilenoglicóis/farmacologia , Purinas/farmacologia , Receptor 7 Toll-Like/metabolismo , Animais , Autoimunidade , Linhagem Celular , Inflamação/tratamento farmacológico , Ligantes , Mastócitos/citologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fator 88 de Diferenciação Mieloide/metabolismo , Neutrófilos/metabolismo , Peritonite/imunologia , Permeabilidade , Peroxidase/metabolismo , Polímeros/química , Fator de Células-Tronco/genética
14.
Front Pharmacol ; 13: 869649, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35479316

RESUMO

Extracellular vesicles (EVs) play an important role in intercellular communication and regulation of cells, especially in the immune system where EVs can participate in antigen presentation and may have adjuvant effects. We aimed to identify small molecule compounds that can increase EV release and thereby enhance the immunogenicity of vaccines. We utilized a THP-1 reporter cell line engineered to release EV-associated tetraspanin (CD63)-Turbo-luciferase to quantitatively measure EVs released in culture supernatants as a readout of a high throughput screen (HTS) of 27,895 compounds. In parallel, the cytotoxicity of the compounds was evaluated by PrestoBlue dye assay. For screening immunostimulatory potency, we performed two additional independent HTS on the same compound library using NF-κB and interferon-stimulated response element THP-1 reporter cell lines. Hit compounds were then identified in each of the 3 HTS's, using a "Top X″ and a Gaussian Mixture Model approach to rule out false positive compounds and to increase the sensitivity of the hit selection. Thus, 644 compounds were selected as hits which were further evaluated for induction of IL-12 in murine bone-marrow derived dendritic cells (mBMDCs) and for effects of cell viability. The resulting 130 hits were then assessed from a medicinal chemistry perspective to remove compounds with functional group liabilities. Finally, 80 compounds were evaluated as vaccine adjuvants in vivo using ovalbumin as a model antigen. We analyzed 18 compounds with adjuvant activity for their ability to induce the expression of co-stimulatory molecules on mBMDCs. The full complement of data was then used to cluster the compounds into 4 distinct biological activity profiles. These compounds were also evaluated for quantitation of EV release and spider plot overlays were generated to compare the activity profiles of compounds within each cluster. This tiered screening process identified two compounds that belong to the 4-thieno-2-thiopyrimidine scaffold with identical screening profiles supporting data reproducibility and validating the overall screening process. Correlation patterns in the adjuvanticity data suggested a role for CD63 and NF-κB pathways in potentiating antigen-specific antibody production. Thus, our three independent cell-based HTS campaigns led to identification of immunostimulatory compounds that release EVs and have adjuvant activity.

15.
ACS Chem Biol ; 17(1): 217-229, 2022 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-34985883

RESUMO

There remains an unmet need for reliable fully synthetic adjuvants that increase lasting protective immune responses from vaccines. We previously reported a high-throughput screening for small molecules that extended nuclear factor kappa-light-chain enhancer of activated B cells (NF-κB) activation after a Toll-like receptor 4 (TLR4) ligand, lipopolysaccharide (LPS), stimulation using a human myeloid reporter cell line. We identified compounds with a conserved aminothiazole scaffold including 2D216 [N-(4-(2,5-dimethylphenyl)thiazol-2-yl)-4-(piperidin-1-ylsulfonyl)benzamide], which increased murine antigen-specific antibody responses when used as a co-adjuvant with LPS. Here, we examined the mechanism of action in human cells. Although 2D216 activated the major mitogen-activated protein kinases, it did not interact with common kinases and phosphatases and did not stimulate many of the pattern recognition receptors (PRRs). Instead, the mechanism of action was linked to intracellular Ca2+ elevation via Ca2+ channel(s) at the plasma membrane and nuclear translocation of the nuclear factor of activated T-cells (NFAT) as supported by RNA-seq data, analysis by reporter cells, Ca2+ flux assays, and immunoblots. Interestingly, 2D216 had minimal, if any, activity on Jurkat T cells but induced cytokine production and surface expression of costimulatory molecules on cells with antigen-presenting functions. A small series of analogs of 2D216 were tested for the ability to enhance a TLR4 ligand-stimulated autologous mixed lymphocyte reaction (MLR). In the MLR, 2E151, N-(4-(2,5-dimethylphenyl)thiazol-2-yl)-4-((4-propylpiperidin-1-yl)sulfonyl)benzamide, was more potent than 2D216. These results indicate that a small molecule that is not a direct PRR agonist can act as a co-adjuvant to an approved adjuvant to enhance human immune responses via a complementary mechanism of action.


Assuntos
Adjuvantes Imunológicos , Agonistas dos Canais de Cálcio , Animais , Humanos , Camundongos , Adjuvantes Imunológicos/farmacologia , Agonistas dos Canais de Cálcio/farmacologia , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Citocinas/genética , Citocinas/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Linfócitos/efeitos dos fármacos , Ovalbumina/imunologia , Receptores de Reconhecimento de Padrão/genética , Receptores de Reconhecimento de Padrão/metabolismo
16.
ACS Chem Biol ; 17(4): 957-968, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35353497

RESUMO

Immunotherapy has become a powerful clinical strategy for treating infectious diseases and cancer. Synthetic small-molecule toll-like receptor 7 (TLR7) ligands are attractive candidates as immunostimulatory agents for immunotherapy. TLR7 is mainly localized in intracellular endosomal compartments so that the formulation of their small-molecule ligands with macromolecules enhances endocytic uptake of TLR7 ligands and improves the pharmaceutical properties. Previously, we demonstrated that gold nanoparticles co-immobilized with a TLR7 ligand derivative, that is, a conjugate of synthetic small-molecule TLR7 ligand (1V209) and thioctic acid (TA) via 4,7,10-trioxa-1,13-tridecanediamine, and α-mannose (1V209-αMan-GNPs: glyco-nanoadjuvants) significantly enhances immunostimulatory effects. In the present study, we designed a second-generation glyco-nanoadjuvant that possesses a poly(ethylene glycol) (PEG) chain as a spacer between 1V209 and GNPs and investigated the impact of linker length in 1V209 derivatives on the immunostimulatory activities. We used different chain lengths of PEG (n = 3, 5, 11, or 23) as spacers between 1V209 and thioctic acid to prepare four 1V209-αMan-GNPs. In the in vitro study using primary mouse bone-marrow-derived dendritic cells, 1V209-αMan-GNPs that immobilized with longer 1V209 derivatives, especially the 1V209 derivative possessing PEG23 (1V209-PEG23-TA), showed the highest potency toward induction both for interleukin-6 and type I interferon production than those derivatives with shorter PEG chains. Furthermore, 1V209-αMan-GNPs that immobilized with 1V209-PEG23-TA showed significantly higher adjuvant effects for inducing both humoral and cell-mediated immune responses against ovalbumin in the in vivo immunization study. These results indicate that the linker length for immobilizing small-molecule TLR7 ligand on the GNPs significantly affects the adjuvant activity of 1V209-αMan-GNPs and that 1V209-αMan-GNPs immobilized with 1V209-PEG-23-TA could be superior adjuvants for immunotherapies.


Assuntos
Nanopartículas Metálicas , Ácido Tióctico , Adjuvantes Imunológicos/farmacologia , Animais , Ouro , Imunização , Ligantes , Camundongos , Receptor 7 Toll-Like
17.
Vaccines (Basel) ; 10(10)2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36298559

RESUMO

Systemically vaccinated individuals against COVID-19 and influenza may continue to support viral replication and shedding in the upper airways, contributing to the spread of infections. Thus, a vaccine regimen that enhances mucosal immunity in the respiratory mucosa is needed to prevent a pandemic. Intranasal/pulmonary (IN) vaccines can promote mucosal immunity by promoting IgA secretion at the infection site. Here, we demonstrate that an intramuscular (IM) priming-IN boosting regimen with an inactivated influenza A virus adjuvanted with the liposomal dual TLR4/7 adjuvant (Fos47) enhances systemic and local/mucosal immunity. The IN boosting with Fos47 (IN-Fos47) enhanced antigen-specific IgA secretion in the upper and lower respiratory tracts compared to the IM boosting with Fos47 (IM-Fos47). The secreted IgA induced by IN-Fos47 was also cross-reactive to multiple influenza virus strains. Antigen-specific tissue-resident memory T cells in the lung were increased after IN boosting with Fos47, indicating that IN-Fos47 established tissue-resident T cells. Furthermore, IN-Fos47 induced systemic cross-reactive IgG antibody titers comparable to those of IM-Fos47. Neither local nor systemic reactogenicity or adverse effects were observed after IN delivery of Fos47. Collectively, these results indicate that the IM/IN regimen with Fos47 is safe and provides both local and systemic anti-influenza immune responses.

18.
Bioconjug Chem ; 22(3): 445-54, 2011 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-21338093

RESUMO

Toll-like receptor 7 (TLR7) is located in the endosomal compartment of immune cells. Signaling through TLR7, mediated by the adaptor protein MyD88, stimulates the innate immune system and shapes adaptive immune responses. Previously, we characterized TLR7 ligands conjugated to protein, lipid, or poly(ethylene glycol) (PEG). Among the TLR7 ligand conjugates, the addition of PEG chains reduced the agonistic potency. PEGs are safe in humans and widely used for improvement of pharmacokinetics in existing biologics and some low molecular weight compounds. PEGylation could be a feasible method to alter the pharmacokinetics and pharmacodynamics of TLR7 ligands. In this study, we systematically studied the influence of PEG chain length on the in vitro and in vivo properties of potent TLR7 ligands. PEGylation increased solubility of the TLR7 ligands and modulated protein binding. Adding a 6-10 length PEG to the TLR7 ligand reduced its potency toward induction of interleukin (IL)-6 by murine macrophages in vitro and IL-6 and tumor necrosis factor (TNF) in vivo. However, PEGylation with 18 or longer chain restored, and even enhanced, the agonistic activity of the drug. In human peripheral blood mononuclear cells, similar effects of PEGylation were observed for secretion of proinflammatory cytokines, IL-6, IL-12, TNF-α, IL-1ß, and type 1 interferon, as well as for B cell proliferation. In summary, these studies demonstrate that conjugation of PEG chains to a synthetic TLR ligand can impact its potency for cytokine induction depending on the size of the PEG moiety. Thus, PEGylation may be a feasible approach to regulate the pharmacological properties of TLR7 ligands.


Assuntos
Polietilenoglicóis/síntese química , Polietilenoglicóis/metabolismo , Receptor 7 Toll-Like/metabolismo , Animais , Linfócitos B/citologia , Linfócitos B/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Citocinas/metabolismo , Endossomos/metabolismo , Feminino , Humanos , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Ligantes , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Polietilenoglicóis/farmacocinética , Polietilenoglicóis/farmacologia , Transporte Proteico
19.
ACS Appl Bio Mater ; 4(3): 2732-2741, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35014312

RESUMO

Toll-like receptors (TLRs) are pattern recognition receptors that activate innate immunity, and their ligands are promising adjuvants for vaccines and immunotherapies. Small molecule TLR7 ligands are ideal vaccine adjuvants as they induce not only proinflammatory cytokines but also type I interferons. However, their application has only been approved for local administration due to severe systemic immune-related adverse events. In a previous study, we prepared the gold nanoparticles coimmobilized with synthetic small molecule TLR7 ligand, 1V209, and α-mannose (1V209-αMan-GNPs). 1V209-αMan-GNPs were selectively delivered via a cell surface sugar-binding protein, mannose receptor, which enabled selective delivery of TLR7 ligands to immune cells. Besides the mannose receptor, immune cells express various sugar-binding proteins such as macrophage galactose binding lectins and sialic acid-binding immunoglobulin-type lectins and recognize distinct sugar structures. Hence, in the present study, we investigated whether sugar structures on GNPs affect the efficiency and selectivity of intracellular delivery and subsequent immunostimulatory potencies. Five neutral sugars and two sialosides were selected and each sugar was coimmobilized with 1V209 onto GNPs (1V209-SGNPs) and their innate immunostimulatory potencies were compared to that of 1V209-αMan-GNPs. The in vitro study using mouse bone marrow derived dendritic cells (BMDCs) demonstrated that α-glucose, α-N-acetylglucosamine, or α-fucose immobilized 1V209-SGNPs increased interleukin-6 and type I interferon release similar to that of 1V209-αMan-GNPs, whereas galacto-type sugar immobilized 1V209-SGNPs predominantly enhanced type I interferon release. In contrast, sialoside immobilized 1V209-SGNPs did not enhance the potency of 1V209. In the in vivo immunization study using ovalbumin as a model antigen, neutral sugar immobilized 1V209-SGNPs induced comparable T helper-1 immune response to that of 1V209-αMan-GNPs and by 10-fold higher than that of sialoside immobilized 1V209-SGNPs. These results indicate that the sugar structures on 1V209-SGNPs affect their immunostimulatory activities, and functionalization of the carrier particles is important to shape immune responses.


Assuntos
Adjuvantes Imunológicos/farmacologia , Materiais Biocompatíveis/farmacologia , Bibliotecas de Moléculas Pequenas/farmacologia , Açúcares/farmacologia , Receptor 7 Toll-Like/imunologia , Adenina/análogos & derivados , Adenina/química , Adenina/farmacologia , Adjuvantes Imunológicos/química , Animais , Materiais Biocompatíveis/química , Linhagem Celular , Portadores de Fármacos/química , Portadores de Fármacos/farmacologia , Imunização , Ligantes , Manose/química , Manose/farmacologia , Teste de Materiais , Camundongos , Estrutura Molecular , Tamanho da Partícula , Bibliotecas de Moléculas Pequenas/química , Açúcares/química
20.
Front Pharmacol ; 12: 668609, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33935791

RESUMO

Extracellular vesicles (EVs) are identified as mediators of intercellular communication and cellular regulation. In the immune system, EVs play a role in antigen presentation as a part of cellular communication. To enable drug discovery and characterization of compounds that affect EV biogenesis, function, and release in immune cells, we developed and characterized a reporter cell line that allows the quantitation of EVs shed into culture media in phenotypic high-throughput screen (HTS) format. Tetraspanins CD63 and CD9 were previously reported to be enriched in EVs; hence, a construct with dual reporters consisting of CD63-Turbo-luciferase (Tluc) and CD9-Emerald green fluorescent protein (EmGFP) was engineered. This construct was transduced into the human monocytic leukemia cell line, THP-1. Cells expressing the highest EmGFP were sorted by flow cytometry as single cell, and clonal pools were expanded under antibiotic selection pressure. After four passages, the green fluorescence dimmed, and EV biogenesis was then tracked by luciferase activity in culture supernatants. The Tluc activities of EVs shed from CD63Tluc-CD9EmGFP reporter cells in the culture supernatant positively correlated with the concentrations of released EVs measured by nanoparticle tracking analysis. To examine the potential for use in HTS, we first miniaturized the assay into a robotic 384-well plate format. A 2210 commercial compound library (Maybridge) was then screened twice on separate days, for the induction of extracellular luciferase activity. The screening data showed high reproducibility on days 1 and 2 (78.6%), a wide signal window, and an excellent Z' factor (average of 2-day screen, 0.54). One hundred eighty-seven compounds showed a response ratio that was 3SD above the negative controls in both day 1 and 2 screens and were considered as hit candidates (approximately 10%). Twenty-two out of 40 re-tested compounds were validated. These results indicate that the performance of CD63Tluc-CD9EmGFP reporter cells is reliable, reproducible, robust, and feasible for HTS of compounds that regulate EV release by the immune cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA