Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 152
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 609(7926): 341-347, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36045295

RESUMO

Monoterpene indole alkaloids (MIAs) are a diverse family of complex plant secondary metabolites with many medicinal properties, including the essential anti-cancer therapeutics vinblastine and vincristine1. As MIAs are difficult to chemically synthesize, the world's supply chain for vinblastine relies on low-yielding extraction and purification of the precursors vindoline and catharanthine from the plant Catharanthus roseus, which is then followed by simple in vitro chemical coupling and reduction to form vinblastine at an industrial scale2,3. Here, we demonstrate the de novo microbial biosynthesis of vindoline and catharanthine using a highly engineered yeast, and in vitro chemical coupling to vinblastine. The study showcases a very long biosynthetic pathway refactored into a microbial cell factory, including 30 enzymatic steps beyond the yeast native metabolites geranyl pyrophosphate and tryptophan to catharanthine and vindoline. In total, 56 genetic edits were performed, including expression of 34 heterologous genes from plants, as well as deletions, knock-downs and overexpression of ten yeast genes to improve precursor supplies towards de novo production of catharanthine and vindoline, from which semisynthesis to vinblastine occurs. As the vinblastine pathway is one of the longest MIA biosynthetic pathways, this study positions yeast as a scalable platform to produce more than 3,000 natural MIAs and a virtually infinite number of new-to-nature analogues.


Assuntos
Antineoplásicos , Reatores Biológicos , Vias Biossintéticas , Engenharia Metabólica , Saccharomyces cerevisiae , Vimblastina , Alcaloides de Vinca , Antineoplásicos/química , Antineoplásicos/metabolismo , Antineoplásicos/provisão & distribuição , Catharanthus/química , Genes Fúngicos , Genes de Plantas , Engenharia Metabólica/métodos , Fosfatos de Poli-Isoprenil , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Triptofano , Vimblastina/biossíntese , Vimblastina/química , Vimblastina/provisão & distribuição , Alcaloides de Vinca/biossíntese , Alcaloides de Vinca/química , Alcaloides de Vinca/provisão & distribuição
2.
Trends Biochem Sci ; 47(11): 906-908, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35914998

RESUMO

Triterpenes are C30 organic compounds abundantly found in all living organisms. Although previously believed to be exclusively produced from squalene or oxidosqualene, a recent report by Tao and colleagues describes a new triterpene biosynthetic route involving the cyclization of the precursor hexaprenyl diphosphate (HexPP) by unprecedented bifunctional terpene synthase (TS) enzymes.


Assuntos
Esqualeno , Triterpenos , Ciclização , Difosfatos
3.
Trends Genet ; 39(4): 237-239, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36822964

RESUMO

Convergent evolution has been described for several metabolic pathways across the kingdoms of life. However, there is hitherto no evidence for such an interkingdom process for antimicrobials. A new report suggests that marine animals have evolved the ability to biosynthesize antimicrobial polyketides, in parallel with bacteria.


Assuntos
Antibacterianos , Bactérias , Animais , Bactérias/genética
4.
Plant Physiol ; 195(3): 2213-2233, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38466200

RESUMO

Rho of Plant (ROP) GTPases function as molecular switches that control signaling processes essential for growth, development, and defense. However, their role in specialized metabolism is poorly understood. Previously, we demonstrated that inhibition of protein geranylgeranyl transferase (PGGT-I) negatively impacts the biosynthesis of monoterpene indole alkaloids (MIA) in Madagascar periwinkle (Catharanthus roseus), indicating the involvement of prenylated proteins in signaling. Here, we show through biochemical, molecular, and in planta approaches that specific geranylgeranylated ROPs modulate C. roseus MIA biosynthesis. Among the six C. roseus ROP GTPases (CrROPs), only CrROP3 and CrROP5, having a C-terminal CSIL motif, were specifically prenylated by PGGT-I. Additionally, their transcripts showed higher expression in most parts than other CrROPs. Protein-protein interaction studies revealed that CrROP3 and CrROP5, but not ΔCrROP3, ΔCrROP5, and CrROP2 lacking the CSIL motif, interacted with CrPGGT-I. Further, CrROP3 and CrROP5 exhibited nuclear localization, whereas CrROP2 was localized to the plasma membrane. In planta functional studies revealed that silencing of CrROP3 and CrROP5 negatively affected MIA biosynthesis, while their overexpression upregulated MIA formation. In contrast, silencing and overexpression of CrROP2 had no effect on MIA biosynthesis. Moreover, overexpression of ΔCrROP3 and ΔCrROP5 mutants devoid of sequence coding for the CSIL motif failed to enhance MIA biosynthesis. These results implicate that CrROP3 and CrROP5 have a positive regulatory role on MIA biosynthesis and thus shed light on how geranylgeranylated ROP GTPases mediate the modulation of specialized metabolism in C. roseus.


Assuntos
Catharanthus , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Catharanthus/genética , Catharanthus/metabolismo , Catharanthus/enzimologia , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Prenilação de Proteína , Motivos de Aminoácidos , Alcaloides/metabolismo , Alcaloides/biossíntese
5.
Nat Chem Biol ; 19(12): 1551-1560, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37932529

RESUMO

Monoterpenoid indole alkaloids (MIAs) represent a large class of plant natural products with marketed pharmaceutical activities against a wide range of indications, including cancer, malaria and hypertension. Halogenated MIAs have shown improved pharmaceutical properties; however, synthesis of new-to-nature halogenated MIAs remains a challenge. Here we demonstrate a platform for de novo biosynthesis of two MIAs, serpentine and alstonine, in baker's yeast Saccharomyces cerevisiae and deploy it to systematically explore the biocatalytic potential of refactored MIA pathways for the production of halogenated MIAs. From this, we demonstrate conversion of individual haloindole derivatives to a total of 19 different new-to-nature haloserpentine and haloalstonine analogs. Furthermore, by process optimization and heterologous expression of a modified halogenase in the microbial MIA platform, we document de novo halogenation and biosynthesis of chloroalstonine. Together, this study highlights a microbial platform for enzymatic exploration and production of complex natural and new-to-nature MIAs with therapeutic potential.


Assuntos
Catharanthus , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Monoterpenos/metabolismo , Alcaloides Indólicos/metabolismo , Plantas/metabolismo , Preparações Farmacêuticas/metabolismo , Proteínas de Plantas/metabolismo
7.
Trends Genet ; 37(8): 688-690, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33941397

RESUMO

Horizontal gene transfer (HGT) is a well-documented evolutionary driving phenomenon in prokaryotes and eukaryotes, but its impact on the plant kingdom has remained elusive. A recent study provides compelling evidences, which support the idea that a plant-derived gene allows for the detoxification of plant defense metabolites in a polyphagous arthropod herbivore.


Assuntos
Evolução Molecular , Transferência Genética Horizontal/genética , Hemípteros/genética , Plantas/genética , Animais , Insetos/genética , Filogenia
8.
Chembiochem ; 24(18): e202300234, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37249120

RESUMO

Cocaine and hyoscyamine are two tropane alkaloids (TA) from Erythroxylaceae and Solanaceae, respectively. These famous compounds possess anticholinergic properties that can be used to treat neuromuscular disorders. While the hyoscyamine biosynthetic pathway has been fully elucidated allowing its de novo synthesis in yeast, the cocaine pathway remained only partially elucidated. Recently, the Huang research group has completed the cocaine biosynthetic route by characterizing its two missing enzymes. This allowed the whole pathway to be transferring into Nicotiana benthamiana to achieve cocaine production. Here, besides highlighting the impact of this discovery, we discuss how TA biosynthesis evolved via the recruitment of two distinct and convergent pathways in Erythroxylaceae and Solanaceae. Finally, while enriching our knowledge on TA biosynthesis, this diversification of the molecular actors involved in cocaine and hyoscyamine biosynthesis opens perspectives in metabolic engineering by exploring enzyme biochemical plasticity that can ease and shorten TA pathway reconstitution in heterologous organisms.


Assuntos
Cocaína , Hiosciamina , Solanaceae , Cocaína/metabolismo , Tropanos/química , Tropanos/metabolismo , Solanaceae/metabolismo , Antagonistas Colinérgicos/metabolismo
9.
Molecules ; 28(11)2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37299031

RESUMO

The composition of bioactive polyphenols from grape canes, an important viticultural byproduct, was shown to be varietal-dependent; however, the influence of soil-related terroir factors remains unexplored. Using spatial metabolomics and correlation-based networks, we investigated how continuous changes in soil features and topography may impact the polyphenol composition in grape canes. Soil properties, topography, and grape cane extracts were analyzed at georeferenced points over 3 consecutive years, followed by UPLC-DAD-MS-based metabolomic analysis targeting 42 metabolites. Principal component analyses on intra-vintage metabolomic data presented a good reproducibility in relation to geographic coordinates. A correlation-driven approach was used to explore the combined influence of soil and topographic variables on metabolomic responses. As a result, a metabolic cluster including flavonoids was correlated with elevation and curvature. Spatial metabolomics driven by correlation-based networks represents a powerful approach to spatialize field-omics data and may serve as new field-phenotyping tool in precision agriculture.


Assuntos
Vitis , Vitis/metabolismo , Polifenóis/metabolismo , Reprodutibilidade dos Testes , Metabolômica , Solo
10.
Plant Cell Physiol ; 63(2): 200-216, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35166361

RESUMO

Many plant species from the Apocynaceae, Loganiaceae and Rubiaceae families evolved a specialized metabolism leading to the synthesis of a broad palette of monoterpene indole alkaloids (MIAs). These compounds are believed to constitute a cornerstone of the plant chemical arsenal but above all several MIAs display pharmacological properties that have been exploited for decades by humans to treat various diseases. It is established that MIAs are produced in planta due to complex biosynthetic pathways engaging a multitude of specialized enzymes but also a complex tissue and subcellular organization. In this context, N-methyltransferases (NMTs) represent an important family of enzymes indispensable for MIA biosynthesis but their characterization has always remained challenging. In particular, little is known about the subcellular localization of NMTs in MIA-producing plants. Here, we performed an extensive analysis on the subcellular localization of NMTs from four distinct medicinal plants but also experimentally validated that two putative NMTs from Catharanthus roseus exhibit NMT activity. Apart from providing unprecedented data regarding the targeting of these enzymes in planta, our results point out an additional layer of complexity to the subcellular organization of the MIA biosynthetic pathway by introducing tonoplast and peroxisome as new actors of the final steps of MIA biosynthesis.


Assuntos
Catharanthus , Monoterpenos , Alcaloides Indólicos , Metiltransferases , Peroxissomos , Proteínas de Plantas , gama-Tocoferol
11.
Chembiochem ; 23(16): e202200223, 2022 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-35666802

RESUMO

Harmful algal blooms (HABs) represent both ecological and public health hazards in the marine environment. Indeed, some algae can produce metabolites that have negative effects on marine ecosystems and mammals. Kainoid derivatives such as kainic acid (KA) and domoic acid (DA) are considered some of the most toxic metabolites of marine origin biosynthesized by a limited number of micro- and macroalgae. While recent works have provided the first insights into the biosynthetic route of KA in red algae and DA in diatoms, the DA biosynthetic pathway has remained uncharacterized for red algae. In a recent work, the research groups of Chekan and Moore have not only elucidated the biosynthetic pathway of DA in the red alga Chondria armata but also shed light on its complex evolution among marine species. We discuss here the importance of pursuing active research in this area to gain insights into secondary biosynthetic pathways in marine organisms for diagnostic and metabolic engineering perspectives.


Assuntos
Diatomáceas , Alga Marinha , Animais , Organismos Aquáticos , Ecossistema , Proliferação Nociva de Algas , Mamíferos
12.
Crit Rev Microbiol ; 48(6): 657-695, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34893006

RESUMO

While fungi are widely occupying nature, many species are responsible for devastating mycosis in humans. Such niche diversity explains how quick fungal adaptation is necessary to endow the capacity of withstanding fluctuating environments and to cope with host-imposed conditions. Among all the molecular mechanisms evolved by fungi, the most studied one is the activation of the phosphorelay signalling pathways, of which the high osmolarity glycerol (HOG) pathway constitutes one of the key molecular apparatus underpinning fungal adaptation and virulence. In this review, we summarize the seminal knowledge of the HOG pathway with its more recent developments. We specifically described the HOG-mediated stress adaptation, with a particular focus on osmotic and oxidative stress, and point out some lags in our understanding of its involvement in the virulence of pathogenic species including, the medically important fungi Candida albicans, Cryptococcus neoformans, and Aspergillus fumigatus, compared to the model yeast Saccharomyces cerevisiae. Finally, we also highlighted some possible applications of the HOG pathway modifications to improve the fungal-based production of natural products in the industry.


Assuntos
Produtos Biológicos , Glicerol , Humanos , Glicerol/metabolismo , Proteínas Fúngicas/metabolismo , Pressão Osmótica , Aspergillus fumigatus/metabolismo , Concentração Osmolar , Saccharomyces cerevisiae/metabolismo
13.
Plant Physiol ; 187(2): 846-857, 2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34608956

RESUMO

Specialized metabolites are chemically complex small molecules with a myriad of biological functions. To investigate plant-specialized metabolite biosynthesis more effectively, we developed an improved method for virus-induced gene silencing (VIGS). We designed a plasmid that incorporates fragments of both the target gene and knockdown marker gene (phytoene desaturase, PDS), which identifies tissues that have been successfully silenced in planta. To demonstrate the utility of this method, we used the terpenoid indole alkaloid (TIA) pathway in Madagascar periwinkle (Catharanthus roseus) as a model system. Catharanthus roseus is a medicinal plant well known for producing many bioactive compounds, such as vinblastine and vincristine. Our VIGS method enabled the discovery of a previously unknown biosynthetic enzyme, serpentine synthase (SS). This enzyme is a cytochrome P450 (CYP) that produces the ß-carboline alkaloids serpentine and alstonine, compounds with strong blue autofluorescence and potential pharmacological activity. The discovery of this enzyme highlights the complexity of TIA biosynthesis and demonstrates the utility of this improved VIGS method for discovering unidentified metabolic enzymes in plants.


Assuntos
Catharanthus/genética , Oxirredutases/metabolismo , Proteínas de Plantas/genética , Catharanthus/enzimologia , Catharanthus/metabolismo , Inativação Gênica , Genes de Plantas , Proteínas de Plantas/metabolismo , Alcaloides de Triptamina e Secologanina/metabolismo , Transdução de Sinais
14.
Plant Physiol ; 185(3): 836-856, 2021 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-33793899

RESUMO

Deglycosylation is a key step in the activation of specialized metabolites involved in plant defense mechanisms. This reaction is notably catalyzed by ß-glucosidases of the glycosyl hydrolase 1 (GH1) family such as strictosidine ß-d-glucosidase (SGD) from Catharanthus roseus. SGD catalyzes the deglycosylation of strictosidine, forming a highly reactive aglycone involved in the synthesis of cytotoxic monoterpene indole alkaloids (MIAs) and in the crosslinking of aggressor proteins. By exploring C. roseus transcriptomic resources, we identified an alternative splicing event of the SGD gene leading to the formation of a shorter isoform of this enzyme (shSGD) that lacks the last 71-residues and whose transcript ratio with SGD ranges from 1.7% up to 42.8%, depending on organs and conditions. Whereas it completely lacks ß-glucosidase activity, shSGD interacts with SGD and causes the disruption of SGD multimers. Such disorganization drastically inhibits SGD activity and impacts downstream MIA synthesis. In addition, shSGD disrupts the metabolic channeling of downstream biosynthetic steps by hampering the recruitment of tetrahydroalstonine synthase in cell nuclei. shSGD thus corresponds to a pseudo-enzyme acting as a regulator of MIA biosynthesis. These data shed light on a peculiar control mechanism of ß-glucosidase multimerization, an organization common to many defensive GH1 members.


Assuntos
Processamento Alternativo/fisiologia , Catharanthus/metabolismo , Processamento Alternativo/genética , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Alcaloides de Vinca/metabolismo
15.
Nat Prod Rep ; 38(12): 2145-2153, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33969366

RESUMO

Microorganisms and plants represent major sources of natural compounds with a plethora of bioactive properties. Among these, plant natural products (PNPs) remain indispensable to human health. With few exceptions, PNP-based pharmaceuticals come from plant specialized metabolisms and display a structure far too complex for a profitable production by total chemical synthesis. Accordingly, their industrial processes of supply are still mostly based on the extraction of final products or precursors directly from plant materials. This implies that particular contexts (e.g. pandemics, climate changes) and natural resource overexploitation are main drivers for the high production cost and recurrent supply shortages. Recently, biotechnological manufacturing alternatives gave rise to a multitude of benchmark studies implementing the production of important PNPs in various heterologous hosts. Here, we spotlight unprecedented advancements in the field of metabolic engineering dedicated to the heterologous production of a prominent series of PNPs that were achieved during the year 2020. We also discuss how the knowledge accumulated in recent years could pave the way for a broader manufacturing palette of natural products from a wide range of natural resources.


Assuntos
Produtos Biológicos/metabolismo , Engenharia Metabólica/métodos , Plantas/metabolismo , Redes e Vias Metabólicas , Preparações de Plantas/metabolismo
16.
Chembiochem ; 22(8): 1368-1370, 2021 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-33215811

RESUMO

The tropane alkaloids (TAs) hyoscyamine and scopolamine function as acetylcholine receptor antagonists and are used clinically as parasympatholytics to treat neuromuscular disorders in humans. While TAs are synthesized in a small subset of plant families, these specialized metabolites are only accumulated in limited quantities in plant organs. The complex chemical structures of these compounds make their industrial production by chemical synthesis very challenging, Therefore, the supply of these TAs still relies on intensive farming of Duboisia shrubs in tropical countries. Many adverse factors such as climate fluctuations and pandemics can thus influence annual world production. Based on the landmark microbial production of the antimalarial semi-synthetic artemisinin, the Smolke group recently developed a yeast cell factory capable of de novo synthesizing hyoscyamine and scopolamine, thus paving the way for an alternative production of these compounds.


Assuntos
Antagonistas Colinérgicos/metabolismo , Duboisia/química , Hiosciamina/biossíntese , Escopolamina/metabolismo , Antagonistas Colinérgicos/química , Duboisia/metabolismo , Humanos , Hiosciamina/química , Estrutura Molecular , Escopolamina/química
17.
Chembiochem ; 22(4): 639-641, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-32964698

RESUMO

For decades, plants have represented an inexhaustible source of natural products used in various sectors such as health and industry. However, one recurring problem is the low accumulation of these compounds in planta and, therefore, their production costs and supply. In recent years, unprecedented hope has been brought by the metabolic engineering of microorganisms, which opens up prospects for supply of these molecules at lower cost with high added value. However, many of these productions remained at a laboratory scale. In a recent article published in Nature Communication, Vincent J. J. Martin's team has developed an optimized yeast strain capable of synthesizing not only a huge amount of (S)-reticuline, a major precursor of the plant tetrahydroisoquinoline alkaloid series, but also a whole range of new-to-nature compounds from this prominent family of natural products. This synthesis, reaching industrial scales, thus paves the way to efficient production in microbial cell factories.


Assuntos
Engenharia Metabólica , Saccharomyces cerevisiae/metabolismo , Tetra-Hidroisoquinolinas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento
19.
Molecules ; 26(12)2021 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-34208368

RESUMO

Plant specialized metabolites are widely used in the pharmaceutical industry, including the monoterpene indole alkaloids (MIAs) vinblastine and vincristine, which both display anticancer activity. Both compounds can be obtained through the chemical condensation of their precursors vindoline and catharanthine extracted from leaves of the Madagascar periwinkle. However, the extensive use of these molecules in chemotherapy increases precursor demand and results in recurrent shortages, explaining why the development of alternative production approaches, such microbial cell factories, is mandatory. In this context, the precursor-directed biosynthesis of vindoline from tabersonine in yeast-expressing heterologous biosynthetic genes is of particular interest but has not reached high production scales to date. To circumvent production bottlenecks, the metabolic flux was channeled towards the MIA of interest by modulating the copy number of the first two genes of the vindoline biosynthetic pathway, namely tabersonine 16-hydroxylase and tabersonine-16-O-methyltransferase. Increasing gene copies resulted in an optimized methoxylation of tabersonine and overcame the competition for tabersonine access with the third enzyme of the pathway, tabersonine 3-oxygenase, which exhibits a high substrate promiscuity. Through this approach, we successfully created a yeast strain that produces the fourth biosynthetic intermediate of vindoline without accumulation of other intermediates or undesired side-products. This optimization will probably pave the way towards the future development of yeast cell factories to produce vindoline at an industrial scale.


Assuntos
Alcaloides Indólicos/metabolismo , Oxigenases de Função Mista/metabolismo , Oxigenases/metabolismo , Quinolinas/metabolismo , Saccharomyces cerevisiae/metabolismo , Vimblastina/análogos & derivados , Vias Biossintéticas , Vimblastina/biossíntese , Vimblastina/química
20.
Nat Chem Biol ; 14(8): 760-763, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29942076

RESUMO

Cyclization reactions that create complex polycyclic scaffolds are hallmarks of alkaloid biosynthetic pathways. We present the discovery of three homologous cytochrome P450s from three monoterpene indole alkaloid-producing plants (Rauwolfia serpentina, Gelsemium sempervirens and Catharanthus roseus) that provide entry into two distinct alkaloid classes, the sarpagans and the ß-carbolines. Our results highlight how a common enzymatic mechanism, guided by related but structurally distinct substrates, leads to either cyclization or aromatization.


Assuntos
Catharanthus/enzimologia , Sistema Enzimático do Citocromo P-450/metabolismo , Gelsemium/enzimologia , Alcaloides Indólicos/metabolismo , Rauwolfia/enzimologia , Ciclização , Alcaloides Indólicos/química , Conformação Molecular , Estereoisomerismo , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA