Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Anal Chem ; 88(8): 4409-17, 2016 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-26991046

RESUMO

Two-dimensional Fourier transform ion cyclotron resonance mass spectrometry (2D FT-ICR MS) allows the correlation between precursor and fragment ions in tandem mass spectrometry without the need to isolate the precursor ion beforehand. 2D FT-ICR MS has been optimized as a data-independent method for the structural analysis of compounds in complex samples. Data processing methods and denoising algorithms have been developed to use it as an analytical tool. In the present study, the capabilities of 2D FT-ICR MS are explored with a tryptic digest of cytochrome c with both ECD and IRMPD as fragmentation modes. The 2D mass spectra showed useful fragmentation patterns of peptides over a dynamic range of almost 400. By using a quadratic calibration, fragment ion peaks could be successfully assigned. The correlation between precursor and fragment ions in the 2D mass spectra was more accurate than in MS/MS spectra after quadrupole isolation, due to the limitations of quadrupole isolation. The use of the second dimension allowed for successful fragment assignment from precursors that were separated by only m/z 0.0156. The resulting cleavage coverage of cytochrome c almost matched data provided by high-resolution FT-ICR MS/MS analysis, but the 2D FT-ICR MS method required only one experimental scan.


Assuntos
Citocromos c/análise , Espectrometria de Massas/métodos , Proteômica/métodos , Algoritmos , Animais , Bovinos , Análise de Fourier
2.
Anal Chem ; 84(13): 5589-95, 2012 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-22762261

RESUMO

2D FT-ICR MS allows the correlation between precursor and fragment ions by modulating ion cyclotron radii for fragmentation modes with radius-dependent efficiency in the ICR cell without the need for prior ion isolation. This technique has been successfully applied to ion-molecule reactions, Collision-induced dissociation and infrared multiphoton dissociation. In this study, we used electron capture dissociation for 2D FT-ICR MS for the first time, and we recorded two-dimensional mass spectra of peptides and a mixture of glycopeptides that showed fragments that are characteristic of ECD for each of the precursor ions in the sample. We compare the sequence coverage obtained with 2D ECD FT-ICR MS with the sequence coverage obtained with ECD MS/MS and compare the sensitivities of both techniques. We demonstrate how 2D ECD FT-ICR MS can be implemented to identify peptides and glycopeptides for proteomics analysis.


Assuntos
Glicopeptídeos/química , Peptídeos/química , Espectrometria de Massas em Tandem/métodos , Sequência de Aminoácidos , Ciclotrons , Análise de Fourier , Íons/química , Proteômica
3.
Rapid Commun Mass Spectrom ; 25(11): 1609-16, 2011 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-21594936

RESUMO

In two-dimensional Fourier transform ion cyclotron resonance mass spectrometry (2D FTICR-MS), scintillation noise, caused mostly by fluctuations in the number of ions in the ICR cell, is the leading cause for errors in spectrum interpretation. In this study, we adapted an algorithm based on singular value decomposition and first introduced by Cadzow et al. (IEE Proceedings Pt. F 1987, 134, 69) to 2D FTICR-MS and we measured its performance in terms of noise reduction without losing signal information in the 2D mass spectrum.


Assuntos
Algoritmos , Espectrometria de Massas/métodos , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Bradicinina/química , Fragmentos de Peptídeos/química
4.
Nucleic Acids Res ; 35(Database issue): D521-6, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17202168

RESUMO

The Human Metabolome Database (HMDB) is currently the most complete and comprehensive curated collection of human metabolite and human metabolism data in the world. It contains records for more than 2180 endogenous metabolites with information gathered from thousands of books, journal articles and electronic databases. In addition to its comprehensive literature-derived data, the HMDB also contains an extensive collection of experimental metabolite concentration data compiled from hundreds of mass spectra (MS) and Nuclear Magnetic resonance (NMR) metabolomic analyses performed on urine, blood and cerebrospinal fluid samples. This is further supplemented with thousands of NMR and MS spectra collected on purified, reference metabolites. Each metabolite entry in the HMDB contains an average of 90 separate data fields including a comprehensive compound description, names and synonyms, structural information, physico-chemical data, reference NMR and MS spectra, biofluid concentrations, disease associations, pathway information, enzyme data, gene sequence data, SNP and mutation data as well as extensive links to images, references and other public databases. Extensive searching, relational querying and data browsing tools are also provided. The HMDB is designed to address the broad needs of biochemists, clinical chemists, physicians, medical geneticists, nutritionists and members of the metabolomics community. The HMDB is available at: www.hmdb.ca.


Assuntos
Bases de Dados Factuais , Metabolismo , Bases de Dados Factuais/normas , Humanos , Internet , Espectrometria de Massas , Doenças Metabólicas/genética , Doenças Metabólicas/metabolismo , Redes e Vias Metabólicas , Ressonância Magnética Nuclear Biomolecular , Controle de Qualidade , Interface Usuário-Computador
5.
J Am Soc Mass Spectrom ; 26(12): 2105-14, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26184984

RESUMO

Two-dimensional Fourier transform ion cyclotron resonance mass spectrometry is a data-independent analytical method that records the fragmentation patterns of all the compounds in a sample. This study shows the implementation of atmospheric pressure photoionization with two-dimensional (2D) Fourier transform ion cyclotron resonance mass spectrometry. In the resulting 2D mass spectrum, the fragmentation patterns of the radical and protonated species from cholesterol are differentiated. This study shows the use of fragment ion lines, precursor ion lines, and neutral loss lines in the 2D mass spectrum to determine fragmentation mechanisms of known compounds and to gain information on unknown ion species in the spectrum. In concert with high resolution mass spectrometry, 2D Fourier transform ion cyclotron resonance mass spectrometry can be a useful tool for the structural analysis of small molecules. Graphical Abstract ᅟ.


Assuntos
Colesterol/química , Espectrometria de Massas/métodos , Pressão Atmosférica , Ciclotrons , Desenho de Equipamento , Análise de Fourier , Íons/química , Processos Fotoquímicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA