Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Angew Chem Int Ed Engl ; 62(44): e202310643, 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37594476

RESUMO

Here is reported the synthesis and characterization of an interlocked figure-of-eight rotaxane molecular shuttle from a dibenzo-24-crown-8 (DB24C8) derivative. This latter bears two molecular chains, whose extremities are able to react together by click chemistry. One of the two substituting chain holds an ammonium function aimed at driving the self-entanglement through the complexation of the DB24C8 moiety. In the targeted figure-of-eight rotaxane, shuttling of the DB24C8 along the threaded axle from the best ammonium station to the weaker binding site triazolium was performed through deprotonation or deprotonation-then-carbamoylation of the ammonium. This way, two discrete co-conformational states were obtained, in which the folding and size of the two loops could be changed.

2.
Chemistry ; 27(70): 17576-17580, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34738683

RESUMO

This paper reports the synthesis and study of new pH-sensitive DB24C8-based [2]rotaxane molecular shuttles that contain within their axle four potential sites of interaction for the DB24C8: ammonium, amine, Weinreb amide, and ketone. In the protonated state, the DB24C8 lay around the best ammonium site. After either deprotonation or deprotonation-then-carbamoylation of the ammonium, different localizations of the DB24C8 were seen, depending on both the number and nature of the secondary stations and steric restriction. Unexpectedly, the results indicated that the Weinreb amide was not a proper secondary molecular station for the DB24C8. Nevertheless, through its methoxy side chain, it slowed down the shuttling of the macrocycle along the threaded axle, thereby partitioning the [2]rotaxane into two translational isomers on the NMR timescale. The ketone was successfully used as a secondary molecular station, and its weak affinity for the DB24C8 was similar to that of a secondary amine.


Assuntos
Rotaxanos , Amidas , Aminas , Cetonas , Espectroscopia de Ressonância Magnética
3.
Angew Chem Int Ed Engl ; 60(31): 16778-16799, 2021 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-32894812

RESUMO

Several strategies have been successfully utilised to obtain a wide range of interlocked molecules. However, some interlocked compounds are still not obtained directly and/or efficiently from non-interlocked components because the requisites for self-assembly cannot always be enforced. To circumvent such a synthetic problem, a strategy that consists of synthesizing an isolable and storable interlocked building block in a step that precedes its modification is an appealing chemical route to more sophisticated interlocked molecules. Synthetic opportunities and challenges are closely linked to the fact that the mechanical bond might greatly affect the reactivity of a functionality of the encircled axle, but that the interlocked architecture needs to be preserved during the synthesis. Hence, the mechanical bond plays a fundamental role in the strategy employed. This Review focuses on the challenging post-synthetic modifications of interlocked molecules, sometimes through cleavage of the axle's main chain, but always with conservation of the mechanical bond.

4.
Angew Chem Int Ed Engl ; 60(15): 8380-8384, 2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33475210

RESUMO

The design and synthesis of a novel rotaxane/foldaxane hybrid architecture is reported. The winding of an aromatic oligoamide helix host around a dumbbell-shaped thread-like guest, or axle, already surrounded by a macrocycle was evidenced by NMR spectroscopy and X-ray crystallography. The process proved to depend on the position of the macrocycle along the axle and the associated steric hindrance. The macrocycle thus behaves as a switchable shield that modulates the affinity of the helix for the axle. Reciprocally, the foldamer helix acts as a supramolecular auxiliary that compartmentalizes the axle. In some cases, the macrocycle is forced to move along the axle to allow the foldamer to reach its best recognition site.

5.
Chemistry ; 24(51): 13659-13666, 2018 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-29969523

RESUMO

This work reports on the use of molecular translocators to capture a dibenzo-24-crown-8 (DB24C8) and then release it onto targeted molecular axles to afford, after removal of the translocator, [2]rotaxanes that do not hold any template site. Various translocators were studied and successfully aided the synthesis, with more or less efficacy, of [2]rotaxanes of different lengths. During the releasing step, the DB24C8 macrocycle shuttles along the thread, and the localization of the macrocycle might be driven by steric repulsion on the translocator part and/or electronic attraction of the targeted part of the axle to be encircled, which depends on both the nature of the translocator and the targeted thread to be encircled.

6.
Chemistry ; 23(48): 11529-11539, 2017 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-28594431

RESUMO

This paper reports on the synthesis of a tri-stable [2]rotaxane molecular shuttle, in which the motion of the macrocycle is triggered by either selective protonation/deprotonation or specific carbamoylation/decarbamoylation of an alkylbenzylamine. The threaded axle is surrounded by a dibenzo[24]crown[8] (DB24C8) macrocycle and contains three sites of different binding affinities towards the macrocycle. An N-methyltriazolium moiety acts as a molecular station that has weak affinity for the DB24C8 macrocycle and is located in the centre of the molecular axle. Two other molecular stations, arylammonium and alkylbenzylammonium moieties, sit on either side of the triazolium moiety along the molecular axle and have stronger affinities for the DB24C8 macrocycle. These two ammonium moieties are covalently linked to two different stopper groups at each extremity of the thread: a tert-butylphenyl group and a substituted DB24C8 unit. Owing to steric hindrance, the former does not allow any π-π stacking interactions with the encircling DB24C8 macrocycle, whereas the latter residue does; therefore, this allows the discrimination of the two ammonium stations by the surrounding DB24C8 macrocycle in the fully protonated state. In the deprotonated state, the contrasting reactivity of the amine functional groups, as either a base or a nucleophile, allows for selective reactions that trigger the controlled shuttling of the macrocycle around the three molecular stations.

7.
Molecules ; 22(11)2017 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-29160822

RESUMO

Interlocked molecular machines like [2]rotaxanes are intriguing aesthetic molecules. The control of the localization of the macrocycle, which surrounds a molecular axle, along the thread leads to translational isomers of very different properties. Although many moieties have been used as sites of interactions for crown ethers, the very straightforwardly obtained amide motif has more rarely been envisaged as molecular station. In this article, we report the use of secondary and tertiary amide moieties as efficient secondary molecular station in pH-sensitive molecular shuttles. Depending on the N-substitution of the amide station, and on deprotonation or deprotonation-carbamoylation, the actuation of the molecular machinery differs accordingly to very distinct interactions between the axle and the DB24C8.


Assuntos
Amidas/química , Amidas/síntese química , Modelos Moleculares , Estrutura Molecular , Espectroscopia de Prótons por Ressonância Magnética
8.
Chemistry ; 22(20): 6837-45, 2016 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-27062072

RESUMO

The synthesis of a novel pH-sensitive hetero[4]rotaxane molecular machine through a self-sorting strategy is reported. The original tetra-interlocked molecular architecture combines a [c2]daisy chain scaffold linked to two [2]rotaxane units. Actuation of the system through pH variation is possible thanks to the specific interactions of the dibenzo-24-crown-8 (DB24C8) macrocycles for ammonium, anilinium, and triazolium molecular stations. Selective deprotonation of the anilinium moieties triggers shuttling of the unsubstituted DB24C8 along the [2]rotaxane units.

9.
Chemistry ; 22(26): 8835-47, 2016 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-27239975

RESUMO

The efficient synthesis and very easy isolation of dibenzo[24]crown-8-based [2]pseudorotaxane building blocks that contain an active ester motif at the extremity of the encircled molecular axle and an ammonium moiety as a template for the dibenzo[24]crown-8 is reported. The active ester acts both as a semistopper for the [2]pseudorotaxane species and as an extensible extremity. Among the various investigated active ester moieties, those that allow for the slippage process are given particular focus because this strategy produces fewer side products. Extension of the selected N-hydroxysuccinimide ester based pseudorotaxane building block by using either a mono- or a diamino compound, both containing a triazolium moiety, is also described. These provide a pH-dependent two-station [2]rotaxane molecular machine and a palindromic [3]rotaxane molecular machine, respectively. Molecular machinery on both interlocked compounds through variation of pH was studied and characterized by means of NMR spectroscopy.

10.
Chemphyschem ; 17(12): 1860-9, 2016 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-27062432

RESUMO

The reverse anomeric effect (RAE) was investigated in different mannosyl [2]rotaxane molecular shuttle isomers that contain dibenzo-24-crown-8 (DB24C8) as the macrocycle, and anilinium and pyridinium amide as molecular stations. The switching on or off of the RAE was possible depending on both the pyridinium amide motif and the localization of the DB24C8 along the thread. The (1) C4 mannopyranosyl chair-like conformation was observed in all the non-interlocked molecules because the anomeric carbon of the mannose is linked to the positively charged nitrogen of the pyridinium unit. In the protonated rotaxanes, the (1) C4 chair conformation of the mannose end remains because the DB24C8 resides around the best anilinium station, which is located at the other end of the axle. Upon deprotonation of the anilinium, the DB24C8 shuttles with a large-amplitude motion toward the pyridinium amide stations, where it interacts in a different fashion depending on the pyridinium motif. In one molecular shuttle, the RAE could be switched on or off with control at one end of the encircled thread upon protonation/deprotonation of the other end, through shuttling of the DB24C8.

11.
Angew Chem Int Ed Engl ; 53(27): 6914-9, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24910397

RESUMO

A general synthesis of triazolium-containing [2]rotaxanes, which could not be accessed by other methods, is reported. It is based on a sequential strategy starting from a well-designed macrocycle transporter which contains a template for dibenzo-24-crown-8 and a N-hydroxysuccinimide (NHS) moiety. The sequence is: 1) synthesis by slippage of a [2]rotaxane building-block; 2) its elongation at its NHS end; 3) the delivery of the macrocycle to the elongated part of the axle by an induced translational motion; 4) the contraction process to yield the targeted [2]rotaxane and recycle the initial transporter.


Assuntos
Rotaxanos/química , Triazóis , Compostos de Amônio/química , Éteres de Coroa/química , Compostos Macrocíclicos/química , Rotaxanos/síntese química , Succinimidas/química , Triazóis/química
12.
ChemistryOpen ; : e202400076, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38963159

RESUMO

[cn]daisy chain molecular muscle architectures are self-assemblies of hermaphrodite monomers, which usually contain a macrocycle unit linked to a molecular thread that contains sites of interactions - i. e. molecular stations - for the macrocycle. In these multiply threaded structures, altering with control the affinity between macrocycles and stations allows for contraction and extension of the molecule, which is reminiscent of the operation of a muscle. Besides, the field that consists of combining helix and template-containing rods to design foldaxane supramolecular assemblies is still underexplored. By using foldamer units as surrogates for macrocycles, Gan et al. reported the first supramolecular muscle-like foldamer-containing switch that can adopt, after chemical stimulus, either a contracted co-conformational state or a degenerate-like state for which a slow exchange occurred between the contracted and the stretched state.

13.
Chemistry ; 19(9): 2982-9, 2013 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-23345249

RESUMO

The synthesis of a pH-sensitive two-station [1]rotaxane molecular switch by self-entanglement of a non-interlocked hermaphrodite molecule, containing an anilinium and triazole moieties, is reported. The anilinium was chosen as the best template for the macrocycle benzometaphenylene[25]crown-8 (BMP25C8) and allowed the self-entanglement of the molecule. The equilibrium between the hermaphrodite molecule and the pseudo[1]rotaxane was studied by (1)H NMR spectroscopy: the best conditions of self-entanglement were found in the less polar solvent CD(2)Cl(2) and at high dilution. The triazole moiety was then benzylated to afford a benzyltriazolium moiety, which then played a dual role. On one hand, it acts as a bulky gate to trap the BMP25C8, thus to avoid any self-disentanglement of the molecular architecture. On another hand, it acts as a second molecular station for the macrocycle. At acidic pH, the BMP25C8 resides around the best anilinium molecular station, displaying the lasso [1]rotaxane in a loosened conformation. The deprotonation of the anilinium molecular station triggers the shuttling of the BMP25C8 around the triazolium moiety, therefore tightening the lasso.


Assuntos
Compostos de Anilina/química , Éteres de Coroa/química , Compostos Macrocíclicos/química , Rotaxanos/química , Rotaxanos/síntese química , Solventes/química , Triazóis/química , Concentração de Íons de Hidrogênio , Espectroscopia de Ressonância Magnética , Conformação Molecular , Estrutura Molecular
14.
J Org Chem ; 78(8): 4099-106, 2013 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-23521611

RESUMO

A two-station [2]rotaxane, consisting of a dibenzo-24-crown-8 macrocycle (DB24C8) that surrounds a molecular axle containing an anilinium and a monosubstituted pyridinium amide molecular stations, has been synthesized via alkyne-azide "click chemistry". The subsequent N-benzylation of the triazole moiety, which is located in the middle of the threaded axle, was then envisaged. In addition to affording a third molecular station (i.e., a triazolium station) for the DB24C8, it was found that the benzyl moiety behaves as a kinetic molecular barrier that prevents the DB24C8 from shuttling along the molecular encircled axle from one extremity to the other. Depending on where the DB24C8 is initially located, the N-benzylation of the triazole allows trapping of the DB24C8 on either the "left" or the "right" side of the thread with respect to the triazolium station. The presence of the benzyl barrier thus affords two different three-station [2]rotaxane molecular machines, in which some of co-conformational states remain unbalanced and not at the equilibrium.


Assuntos
Compostos de Benzil/química , Éteres de Coroa/química , Rotaxanos/química , Triazóis/química , Estrutura Molecular
15.
Molecules ; 18(9): 11553-75, 2013 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-24048287

RESUMO

The synthesis of a peptide-containing lasso molecular switch by a self-entanglement strategy is described. The interlocked rotaxane molecular machine consists of a benzometaphenylene[25]crown-8 (BMP25C8) macrocycle surrounding a molecular axle. This molecular axle contains a tripeptidic sequence and two molecular stations: a N-benzyltriazolium and a pH-sensitive anilinium station. The tripeptide is located between the macrocycle and the triazolium station, so that its conformation can be tailored depending on the shuttling of the macrocycle from one station to the other. At acidic pH, the macrocycle resides around the anilinium moiety, whereas it shuttles around the triazolium station after deprotonation. This molecular machinery thus forces the lasso to adopt a tightened or a loosened conformation.


Assuntos
Coronantes/síntese química , Oligopeptídeos/síntese química , Rotaxanos/síntese química , Compostos de Anilina/síntese química , Concentração de Íons de Hidrogênio , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Conformação Molecular , Triazóis/síntese química
16.
Angew Chem Int Ed Engl ; 51(11): 2544-5, 2012 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-22238238

RESUMO

Collar and tie men: the smallest trefoil knot reported to date has been prepared by an active metal template synthesis. Copper(I) ions are able to constrain the well-designed structure so that it can form the loops by complexing to the bipyridine moieties in the core of the thread and the two ends of the entangled lace on opposite faces of the loop, before acting as a catalyst to close the lace.


Assuntos
Metais/química , Alcinos/química , Azidas/química , Catálise , Cobre/química , Íons/química , Piridinas/química
17.
Chem Commun (Camb) ; 58(62): 8618-8621, 2022 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-35786713

RESUMO

The wrapping of an aromatic oligoamide helix around an active ester-containing [2]rotaxane enforced the sliding and the sequestration of the surrounding macrocycle around a part of the axle for which it has no formal affinity. The foldamer-mediated compartmentalization of the [2]rotaxane shuttle was subsequently used to prepare an improbable rotaxane.


Assuntos
Rotaxanos
18.
Chempluschem ; 87(3): e202100458, 2021 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-34811956

RESUMO

Although not often encountered, cyclic interlocked molecules are appealing molecular targets because of their restrained tridimensional structure which is related to both the cyclic and interlocked shapes. Interlocked molecules such as rotaxane building blocks may be good candidates for post-synthetic intramolecular cyclization if the preservation of the mechanical bond ensures the interlocked architecture throughout the reaction. This is obviously the case if the modification does not involve the cleavage of either the macrocycle's main chain or the encircled part of the axle. However, among the post-synthetic reactions, the chemical linkage between two reactive sites belonging to embedded elements of rotaxanes still consists of an underexploited route to interlocked cyclic molecules. This Review lists the rare examples of macrocyclization through chemical connection between reactive sites belonging to a surrounding macrocycle and/or an encircled axle of interlocked rotaxanes.

19.
Chemistry ; 16(33): 10062-73, 2010 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-20607770

RESUMO

High-yield, straightforward synthesis of two- and three-station [2]rotaxane molecular machines based on an anilinium, a triazolium, and a mono- or disubstituted pyridinium amide station is reported. In the case of the pH-sensitive two-station molecular machines, large-amplitude movement of the macrocycle occurred. However, the presence of an intermediate third station led, after deprotonation of the anilinium station, and depending on the substitution of the pyridinium amide, either to exclusive localization of the macrocycle around the triazolium station or to oscillatory shuttling of the macrocycle between the triazolium and monosubstituted pyridinium amide station. Variable-temperature (1)H NMR investigation of the oscillating system was performed in CD(2)Cl(2). The exchange between the two stations proved to be fast on the NMR timescale for all considered temperatures (298-193 K). Interestingly, decreasing the temperature displaced the equilibrium between the two translational isomers until a unique location of the macrocycle around the monosubstituted pyridinium amide station was reached. Thermodynamic constants K were evaluated at each temperature: the thermodynamic parameters DeltaH and DeltaS were extracted from a Van't Hoff plot, and provided the Gibbs energy DeltaG. Arrhenius and Eyring plots afforded kinetic parameters, namely, energies of activation E(a), enthalpies of activation DeltaH( not equal), and entropies of activation DeltaS( not equal). The DeltaG values deduced from kinetic parameters match very well with the DeltaG values determined from thermodynamic parameters. In addition, whereas signal coalescence of pyridinium hydrogen atoms located next to the amide bond was observed at 205 K in the oscillating rotaxane and at 203 K in the two-station rotaxane with a unique location of the macrocycle around the pyridinium amide, no separation of (1)H NMR signals of the considered hydrogen atoms was seen in the corresponding nonencapsulated thread. It is suggested that the macrocycle acts as a molecular brake for the rotation of the pyridinium-amide bond when it interacts by hydrogen bonding with both the amide NH and the pyridinium hydrogen atoms at the same time.


Assuntos
Rotaxanos/química , Compostos de Anilina/química , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Compostos de Piridínio/química , Rotaxanos/síntese química , Estereoisomerismo , Relação Estrutura-Atividade , Temperatura , Termodinâmica , Triazóis/química
20.
J Org Chem ; 75(19): 6516-31, 2010 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-20815375

RESUMO

The syntheses of various two- and three-station mannosyl [c2]daisy chains, based on a dibenzo-24-crown-8 macrocyclic moiety and an ammonium, a triazolium, and a mono- or disubstituted pyridinium amide station, are reported. The ability of these molecules to act as molecular machine based mimetics has been further studied by (1)H NMR studies. In all the protonated ammonium states, the interwoven rotaxane dimers adopt an extended co-conformation. However, carbamoylation of the ammonium station led to many different other [c2]daisy chain co-conformations, depending on the other molecular stations belonging to the axle. In the two-station [c2]daisy chains containing an ammonium and a mono- or disubstituted pyridinium amide station, two large-amplitude relative movements of the interwoven components were noticed and afforded either an extended and a contracted or very contracted state with, in the latter case, an impressive chairlike conformational flipping of the mannopyranose from (1)C(4) to (4)C(1). In the case of the three-station-based [c2]daisy chains containing an ammonium, a triazolium, and disubstituted pyridinium amide, an extended and a half-contracted molecular state could be obtained because of the stronger affinity of the dibenzo-24-crown-8 part for, respectively, the ammonium, the triazolium, and the disubstituted pyridinium amide. Eventually, with axles comprising an ammonium, a triazolium, and a monosubstituted pyridinium amide, an extended conformation was noticed in the protonated state whereas a continuous oscillation between half-contracted and contracted states, in fast-exchange on the NMR time scale, was triggered by carbamoylation. Variations of the solvent or the temperature allow the modification of the population of each co-conformer. Thermodynamic data provided a small free Gibbs energy ΔG of 2.1 kJ·mol(-1) between the two translational isomers at 298 K.


Assuntos
Manose/química , Manose/síntese química , Conformação Molecular , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA