Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Stem Cells ; 36(2): 265-277, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29086457

RESUMO

The ability to differentiate human pluripotent stem cells (hPSCs) into cardiomyocytes (CMs) makes them an attractive source for repairing injured myocardium, disease modeling, and drug testing. Although current differentiation protocols yield hPSC-CMs to >90% efficiency, hPSC-CMs exhibit immature characteristics. With the goal of overcoming this limitation, we tested the effects of varying passive stretch on engineered heart muscle (EHM) structural and functional maturation, guided by computational modeling. Human embryonic stem cells (hESCs, H7 line) or human induced pluripotent stem cells (IMR-90 line) were differentiated to hPSC-derived cardiomyocytes (hPSC-CMs) in vitro using a small molecule based protocol. hPSC-CMs were characterized by troponin+ flow cytometry as well as electrophysiological measurements. Afterwards, 1.2 × 106 hPSC-CMs were mixed with 0.4 × 106 human fibroblasts (IMR-90 line) (3:1 ratio) and type-I collagen. The blend was cast into custom-made 12-mm long polydimethylsiloxane reservoirs to vary nominal passive stretch of EHMs to 5, 7, or 9 mm. EHM characteristics were monitored for up to 50 days, with EHMs having a passive stretch of 7 mm giving the most consistent formation. Based on our initial macroscopic observations of EHM formation, we created a computational model that predicts the stress distribution throughout EHMs, which is a function of cellular composition, cellular ratio, and geometry. Based on this predictive modeling, we show cell alignment by immunohistochemistry and coordinated calcium waves by calcium imaging. Furthermore, coordinated calcium waves and mechanical contractions were apparent throughout entire EHMs. The stiffness and active forces of hPSC-derived EHMs are comparable with rat neonatal cardiomyocyte-derived EHMs. Three-dimensional EHMs display increased expression of mature cardiomyocyte genes including sarcomeric protein troponin-T, calcium and potassium ion channels, ß-adrenergic receptors, and t-tubule protein caveolin-3. Passive stretch affects the structural and functional maturation of EHMs. Based on our predictive computational modeling, we show how to optimize cell alignment and calcium dynamics within EHMs. These findings provide a basis for the rational design of EHMs, which enables future scale-up productions for clinical use in cardiovascular tissue engineering. Stem Cells 2018;36:265-277.


Assuntos
Biologia Computacional/métodos , Miocárdio/citologia , Linhagem Celular , Citometria de Fluxo , Humanos , Miocárdio/metabolismo , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Engenharia Tecidual/métodos
2.
Circulation ; 135(19): 1832-1847, 2017 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-28167635

RESUMO

BACKGROUND: Advancing structural and functional maturation of stem cell-derived cardiomyocytes remains a key challenge for applications in disease modeling, drug screening, and heart repair. Here, we sought to advance cardiomyocyte maturation in engineered human myocardium (EHM) toward an adult phenotype under defined conditions. METHODS: We systematically investigated cell composition, matrix, and media conditions to generate EHM from embryonic and induced pluripotent stem cell-derived cardiomyocytes and fibroblasts with organotypic functionality under serum-free conditions. We used morphological, functional, and transcriptome analyses to benchmark maturation of EHM. RESULTS: EHM demonstrated important structural and functional properties of postnatal myocardium, including: (1) rod-shaped cardiomyocytes with M bands assembled as a functional syncytium; (2) systolic twitch forces at a similar level as observed in bona fide postnatal myocardium; (3) a positive force-frequency response; (4) inotropic responses to ß-adrenergic stimulation mediated via canonical ß1- and ß2-adrenoceptor signaling pathways; and (5) evidence for advanced molecular maturation by transcriptome profiling. EHM responded to chronic catecholamine toxicity with contractile dysfunction, cardiomyocyte hypertrophy, cardiomyocyte death, and N-terminal pro B-type natriuretic peptide release; all are classical hallmarks of heart failure. In addition, we demonstrate the scalability of EHM according to anticipated clinical demands for cardiac repair. CONCLUSIONS: We provide proof-of-concept for a universally applicable technology for the engineering of macroscale human myocardium for disease modeling and heart repair from embryonic and induced pluripotent stem cell-derived cardiomyocytes under defined, serum-free conditions.


Assuntos
Células-Tronco Embrionárias/transplante , Insuficiência Cardíaca/terapia , Células-Tronco Pluripotentes Induzidas/transplante , Miócitos Cardíacos/transplante , Engenharia Tecidual/métodos , Remodelação Ventricular/fisiologia , Animais , Diferenciação Celular/fisiologia , Células-Tronco Embrionárias/fisiologia , Insuficiência Cardíaca/patologia , Humanos , Células-Tronco Pluripotentes Induzidas/fisiologia , Miocárdio/citologia , Miocárdio/patologia , Miócitos Cardíacos/fisiologia , Impressão Tridimensional , Ratos , Ratos Nus
3.
Circ Res ; 117(8): 720-30, 2015 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-26291556

RESUMO

RATIONALE: Tissue engineering approaches may improve survival and functional benefits from human embryonic stem cell-derived cardiomyocyte transplantation, thereby potentially preventing dilative remodeling and progression to heart failure. OBJECTIVE: Assessment of transport stability, long-term survival, structural organization, functional benefits, and teratoma risk of engineered heart muscle (EHM) in a chronic myocardial infarction model. METHODS AND RESULTS: We constructed EHMs from human embryonic stem cell-derived cardiomyocytes and released them for transatlantic shipping following predefined quality control criteria. Two days of shipment did not lead to adverse effects on cell viability or contractile performance of EHMs (n=3, P=0.83, P=0.87). One month after ischemia/reperfusion injury, EHMs were implanted onto immunocompromised rat hearts to simulate chronic ischemia. Bioluminescence imaging showed stable engraftment with no significant cell loss between week 2 and 12 (n=6, P=0.67), preserving ≤25% of the transplanted cells. Despite high engraftment rates and attenuated disease progression (change in ejection fraction for EHMs, -6.7±1.4% versus control, -10.9±1.5%; n>12; P=0.05), we observed no difference between EHMs containing viable and nonviable human cardiomyocytes in this chronic xenotransplantation model (n>12; P=0.41). Grafted cardiomyocytes showed enhanced sarcomere alignment and increased connexin 43 expression at 220 days after transplantation. No teratomas or tumors were found in any of the animals (n=14) used for long-term monitoring. CONCLUSIONS: EHM transplantation led to high engraftment rates, long-term survival, and progressive maturation of human cardiomyocytes. However, cell engraftment was not correlated with functional improvements in this chronic myocardial infarction model. Most importantly, the safety of this approach was demonstrated by the lack of tumor or teratoma formation.


Assuntos
Células-Tronco Embrionárias/transplante , Sobrevivência de Enxerto , Transplante de Coração/métodos , Infarto do Miocárdio/cirurgia , Miócitos Cardíacos/transplante , Músculos Papilares/transplante , Engenharia Tecidual/métodos , Animais , Biomarcadores/metabolismo , Diferenciação Celular , Linhagem Celular , Sobrevivência Celular , Conexina 43/metabolismo , Modelos Animais de Doenças , Células-Tronco Embrionárias/imunologia , Células-Tronco Embrionárias/metabolismo , Transplante de Coração/efeitos adversos , Xenoenxertos , Humanos , Imunossupressores/farmacologia , Masculino , Contração Miocárdica , Infarto do Miocárdio/imunologia , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Miócitos Cardíacos/imunologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Músculos Papilares/imunologia , Músculos Papilares/metabolismo , Músculos Papilares/patologia , Músculos Papilares/fisiopatologia , Ratos Nus , Ratos Sprague-Dawley , Volume Sistólico , Fatores de Tempo , Transfecção
4.
Proc Natl Acad Sci U S A ; 109(31): 12544-9, 2012 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-22802633

RESUMO

The stability of human embryonic stem cells (hESCs) is of critical importance for both experimental and clinical applications. We find that as an initial response to altered culture conditions, hESCs change their transcription profile for hundreds of genes and their DNA methylation profiles for several genes outside the core pluripotency network. After adaption to conditions of feeder-free defined and/or xeno-free culture systems, expression and DNA methylation profiles are quite stable for additional passaging. However, upon reversion to the original feeder-based culture conditions, numerous transcription changes are not reversible. Similarly, although the majority of DNA methylation changes are reversible, highlighting the plasticity of DNA methylation, a few are persistent. Collectively, this indicates these cells harbor a memory of culture history. For culture-induced DNA methylation changes, we also note an intriguing correlation: hypomethylation of regions 500-2440 bp upstream of promoters correlates with decreased expression, opposite to that commonly seen at promoter-proximal regions. Lastly, changes in regulation of G-coupled protein receptor pathways provide a partial explanation for many of the unique transcriptional changes observed during hESC adaptation and reverse adaptation.


Assuntos
Metilação de DNA/fisiologia , Células-Tronco Embrionárias/metabolismo , Epigênese Genética/fisiologia , Regiões Promotoras Genéticas/fisiologia , Transcrição Gênica/fisiologia , Linhagem Celular , Células-Tronco Embrionárias/citologia , Células Alimentadoras/citologia , Células Alimentadoras/metabolismo , Humanos
5.
Cytotherapy ; 15(8): 999-1010, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23664011

RESUMO

BACKGROUND AIMS: We have previously described a xeno-free scalable system to generate transplantable dopaminergic neurons from human pluripotent stem cells. However, several important questions remain to be answered about our cell therapy efforts. These include determining the exact time at which cells should be transplanted and whether cells at this stage can be frozen, shipped, thawed and injected without compromising their ability to mature and survive the transplantation procedure. We also needed to determine whether further optimization of the culture process could shorten the development time and reduce variability and whether a current Good Manufacture Practice (CGMP) facility could manufacture cells with fidelity. METHODS: We developed an optimized protocol that included modulating the sonic hedgehog homolog gradient with bone morphogenetic proteins (BMP2) and addition of activin to the culture medium, which shortened the time to generate Lmx1A and FoxA2 immunoreactive cells by 4-6 days. RESULTS: We showed that cells at this stage could be safely frozen and thawed while retaining an excellent ability to continue to mature in vitro and survive transplant in vivo. Importantly, we successfully adapted this process to a CGMP facility and manufactured two lots of transplant-ready dopaminergic neurons (>250 vials) under CGMP-compatible conditions. In vitro characterization, including viability/recovery on thawing, whole genome expression as well as expression of midbrain/dopaminergic markers, showed that the cells manufactured under GMP-compatible conditions were similar to cells produced at lab scale. CONCLUSIONS: Our results suggest that this optimized protocol can be used to generate dopaminergic neurons for Investigational New Drug enabling studies.


Assuntos
Técnicas de Cultura de Células , Neurônios Dopaminérgicos/citologia , Neurônios Dopaminérgicos/transplante , Células-Tronco Pluripotentes Induzidas/metabolismo , Neurogênese , Células-Tronco Pluripotentes/citologia , Ativinas , Animais , Proteína Morfogenética Óssea 2/metabolismo , Proliferação de Células , Sobrevivência Celular , Terapia Baseada em Transplante de Células e Tecidos , Células Cultivadas , Criopreservação/métodos , Dopamina/análise , Dopamina/biossíntese , Descoberta de Drogas/métodos , Proteínas Hedgehog/metabolismo , Fator 3-beta Nuclear de Hepatócito/imunologia , Humanos , Proteínas com Homeodomínio LIM/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fatores de Transcrição/imunologia
6.
J Infect Dis ; 205(8): 1294-304, 2012 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-22402037

RESUMO

BACKGROUND: It has been reported that cytomegalovirus (CMV) pp65-specific T cells can protect hematopoietic cell transplant (HCT) recipients from CMV complications. Two candidate CMV peptide vaccines composed of the HLA A*0201 pp65(495-503) cytotoxic CD8(+) T-cell epitope fused to 2 different universal T-helper epitopes (either the synthetic Pan DR epitope [PADRE] or a natural Tetanus sequence) were clinically evaluated for safety and ability to elicit pp65 T cells in HLA A*0201 healthy volunteers. METHODS: Escalating doses (0.5, 2.5, 10 mg) of PADRE or Tetanus pp65(495-503) vaccines with (30 adults) or without (28 adults) PF03512676 adjuvant were administered by subcutaneous injection every 3 weeks for a total of 4 injections. RESULTS: No serious adverse events were reported, although vaccines used in combination with PF03512676 had enhanced reactogenicity. Ex vivo responses were detected by flow cytometry exclusively in volunteers who received the vaccine coadministered with PF03512676. In addition, using a sensitive in vitro stimulation system, vaccine-elicited pp65(495-503) T cells were expanded in 30% of volunteers injected solely with the CMV peptides and in all tested subjects receiving the vaccines coinjected with PF03512676. CONCLUSIONS: Acceptable safety profiles and vaccine-driven expansion of pp65(495-503) T cells in healthy adults support further evaluation of CMV peptide vaccines combined with PF03512676 in the HCT setting. CLINICAL TRIALS REGISTRATION: NCT00722839.


Assuntos
Adjuvantes Imunológicos/administração & dosagem , Infecções por Citomegalovirus/prevenção & controle , Vacinas contra Citomegalovirus/imunologia , Vacinas Antimaláricas/imunologia , Oligodesoxirribonucleotídeos/administração & dosagem , Toxoide Tetânico/imunologia , Adjuvantes Imunológicos/efeitos adversos , Adolescente , Adulto , Sequência de Aminoácidos , Linfócitos T CD8-Positivos/fisiologia , Vacinas contra Citomegalovirus/administração & dosagem , Vacinas contra Citomegalovirus/efeitos adversos , Relação Dose-Resposta Imunológica , Epitopos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Oligodesoxirribonucleotídeos/efeitos adversos , Proteínas Recombinantes/imunologia , Toxoide Tetânico/administração & dosagem , Toxoide Tetânico/efeitos adversos , Vacinas Sintéticas , Adulto Jovem
7.
Mol Ther ; 19(3): 557-66, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21179010

RESUMO

Lentiviral vectors are now in clinical trials for a variety of inherited and acquired disorders. A challenge for moving any viral vector into the clinic is the ability to screen the vector product for the presence of replication-competent virus. Assay development for replication-competent lentivirus (RCL) is particularly challenging because recombination of vector packaging plasmids and cellular DNA leading to RCL has not been reported with the current viral vector systems. Therefore, the genomic structure of a RCL remains theoretical. In this report, we describe a highly sensitive RCL assay suitable for screening vector product and have screened large-scale vector supernatant, cells used in vector production, and cells transduced with clinical grade vector. We discuss the limitations and challenges of the current assay, and suggest modifications that may improve the suitability of this assay for screening US Food and Drug Administration (US FDA)-licensed products.


Assuntos
Vetores Genéticos/isolamento & purificação , Vetores Genéticos/normas , Lentivirus/isolamento & purificação , Replicação Viral , Linhagem Celular , Ensaio de Imunoadsorção Enzimática/métodos , Vetores Genéticos/genética , Vetores Genéticos/uso terapêutico , Células HEK293 , Proteína do Núcleo p24 do HIV/imunologia , Humanos , Lentivirus/genética , Controle de Qualidade , Recombinação Genética , Padrões de Referência , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
9.
Nat Biotechnol ; 36(7): 597-605, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29969440

RESUMO

Pluripotent stem cell-derived cardiomyocyte grafts can remuscularize substantial amounts of infarcted myocardium and beat in synchrony with the heart, but in some settings cause ventricular arrhythmias. It is unknown whether human cardiomyocytes can restore cardiac function in a physiologically relevant large animal model. Here we show that transplantation of ∼750 million cryopreserved human embryonic stem cell-derived cardiomyocytes (hESC-CMs) enhances cardiac function in macaque monkeys with large myocardial infarctions. One month after hESC-CM transplantation, global left ventricular ejection fraction improved 10.6 ± 0.9% vs. 2.5 ± 0.8% in controls, and by 3 months there was an additional 12.4% improvement in treated vs. a 3.5% decline in controls. Grafts averaged 11.6% of infarct size, formed electromechanical junctions with the host heart, and by 3 months contained ∼99% ventricular myocytes. A subset of animals experienced graft-associated ventricular arrhythmias, shown by electrical mapping to originate from a point-source acting as an ectopic pacemaker. Our data demonstrate that remuscularization of the infarcted macaque heart with human myocardium provides durable improvement in left ventricular function.


Assuntos
Diferenciação Celular/genética , Células-Tronco Embrionárias Humanas/transplante , Infarto do Miocárdio/terapia , Miócitos Cardíacos/transplante , Animais , Criopreservação , Modelos Animais de Doenças , Humanos , Macaca , Infarto do Miocárdio/patologia , Miocárdio/patologia , Miócitos Cardíacos/citologia , Células-Tronco Pluripotentes/transplante , Primatas
10.
EBioMedicine ; 4: 74-85, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26981572

RESUMO

The directed differentiation of human cardiomyocytes (CMs) from pluripotent cells provides an invaluable model for understanding mechanisms of cell fate determination and offers considerable promise in cardiac regenerative medicine. Here, we utilize a human embryonic stem cell suspension bank, produced according to a good manufacturing practice, to generate CMs using a fully defined and small molecule-based differentiation strategy. Primitive and cardiac mesoderm purification was used to remove non-committing and multi-lineage populations and this significantly aided the identification of key transcription factors, lncRNAs, and essential signaling pathways that define cardiomyogenesis. Global methylation profiles reflect CM development and we report on CM exon DNA methylation "memories" persisting beyond transcription repression and marking the expression history of numerous developmentally regulated genes, especially transcription factors.


Assuntos
Metilação de DNA , Células-Tronco Embrionárias/citologia , Epigênese Genética , Éxons , Miócitos Cardíacos/citologia , Células-Tronco Pluripotentes/citologia , Transcriptoma , Diferenciação Celular , Linhagem da Célula , Células Cultivadas , Células-Tronco Embrionárias/metabolismo , Humanos , Miócitos Cardíacos/metabolismo , Células-Tronco Pluripotentes/metabolismo
11.
Methods Mol Biol ; 1283: 13-21, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25537838

RESUMO

Suspension cell culture systems with superior scalability, controllability, and monitoring options are an attractive alternative to static adherent culture methods for expansion and production of human pluripotent stem cells (hPSCs), including embryonic stem cells (ESCs) and induced pluripotent cells (iPSCs). In this chapter, we describe a scalable suspension culture system using serum-free, feeder-free, matrix-free, and defined culture conditions with spinner flasks for hPSC maintenance and expansion. This suspension culture system provides an efficient and GMP-compatible process for large-scale manufacture of hPSCs.


Assuntos
Técnicas de Cultura de Células/instrumentação , Técnicas de Cultura de Células/métodos , Células-Tronco Pluripotentes/citologia , Diferenciação Celular , Criopreservação/métodos , Células-Tronco Embrionárias/citologia , Humanos , Células-Tronco Pluripotentes Induzidas/citologia
12.
Stem Cells Transl Med ; 4(10): 1097-100, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26285658

RESUMO

UNLABELLED: Several human embryonic stem cell (hESC)-derived cell therapeutics have entered clinical testing and more are in various stages of preclinical development. The U.S. Food and Drug Administration (FDA) regulates these products under existing regulations and has stated that these products do not constitute a new class of biologic. However, as human tissue, hESCs are subject to regulations that were developed before hESCs were first described. The regulations have not been revised since 2005, well before the first hESC-derived product entered clinical studies. The current regulations require donors of hESCs to be tested in the same manner as donors of tissues intended for transplantation. However, because hESC-derived cell products are more than minimally manipulated, they are also subject to the same end-of-production release testing as most other biologic agents. In effect, this makes hESC products subject to redundant testing. No other biologic is subject to a similar testing requirement. Furthermore, the regulations that require donor testing are specifically applicable to hESC cells harvested from donors after a date in 2005. It is unclear which regulations cover hESCs harvested before 2005. Ambiguity in the guidelines and redundant testing requirements have unintentionally created a burdensome regulatory paradigm for these products and reluctance on the part of developers to invest in these promising therapeutics. We propose a simple solution that would address FDA safety concerns, eliminate regulatory uncertainty and risk, and provide flexibility for the FDA in the regulation of hESC-derived cell therapies. SIGNIFICANCE: Regulatory ambiguity concerning donor eligibility screening and testing requirements for human embryonic stem cell lines, in particular those lines created before 2005, are causing significant concern for drug developers. Technically, most of these lines fail to meet eligibility under U.S. Food and Drug Administration (FDA) rules for product licensure, and many developers are unaware that FDA approval to begin trials under an exemption is not an assurance that the FDA will grant licensure of the product. This Perspective outlines the ambiguity and the problem it has caused and proposes a workable solution. The intent is to generate stakeholder and FDA discussion on this issue.


Assuntos
Guias como Assunto , Células-Tronco Embrionárias Humanas , Pesquisa com Células-Tronco/legislação & jurisprudência , Doadores de Tecidos/legislação & jurisprudência , United States Food and Drug Administration/legislação & jurisprudência , Produtos Biológicos/isolamento & purificação , Seleção do Doador/legislação & jurisprudência , Seleção do Doador/normas , Fidelidade a Diretrizes , Humanos , Segurança do Paciente , Estados Unidos , United States Food and Drug Administration/normas
13.
J Clin Invest ; 125(7): 2551-7, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-26132109

RESUMO

Human pluripotent stem cells are known to have the capacity to renew indefinitely, being intrinsically able to differentiate into many different cell types. These characteristics have generated tremendous enthusiasm about the potential applications of these cells in regenerative medicine. However, major challenges remain with the development and testing of novel experimental stem cell therapeutics in the field. In this Review, we focus on the nature of the preclinical challenges and discuss potential solutions that could help overcome them. Furthermore, we discuss the use of allogeneic versus autologous stem cell products, including a review of their respective advantages and disadvantages, major clinical requirements, quality standards, time lines, and costs of clinical grade development.


Assuntos
Células-Tronco Pluripotentes Induzidas/transplante , Animais , Bancos de Espécimes Biológicos/normas , Diferenciação Celular , Teste de Histocompatibilidade , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/imunologia , Medicina Regenerativa/tendências , Segurança , Transplante de Células-Tronco/legislação & jurisprudência , Transplante de Células-Tronco/normas , Transplante de Células-Tronco/tendências , Pesquisa Translacional Biomédica/tendências , Transplante Autólogo , Transplante Homólogo , Estados Unidos , United States Food and Drug Administration
14.
Stem Cell Res ; 15(2): 365-75, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26318718

RESUMO

To meet the need of a large quantity of hPSC-derived cardiomyocytes (CM) for pre-clinical and clinical studies, a robust and scalable differentiation system for CM production is essential. With a human pluripotent stem cells (hPSC) aggregate suspension culture system we established previously, we developed a matrix-free, scalable, and GMP-compliant process for directing hPSC differentiation to CM in suspension culture by modulating Wnt pathways with small molecules. By optimizing critical process parameters including: cell aggregate size, small molecule concentrations, induction timing, and agitation rate, we were able to consistently differentiate hPSCs to >90% CM purity with an average yield of 1.5 to 2×10(9) CM/L at scales up to 1L spinner flasks. CM generated from the suspension culture displayed typical genetic, morphological, and electrophysiological cardiac cell characteristics. This suspension culture system allows seamless transition from hPSC expansion to CM differentiation in a continuous suspension culture. It not only provides a cost and labor effective scalable process for large scale CM production, but also provides a bioreactor prototype for automation of cell manufacturing, which will accelerate the advance of hPSC research towards therapeutic applications.


Assuntos
Diferenciação Celular , Células-Tronco Pluripotentes/citologia , Actinina/metabolismo , Técnicas de Cultura de Células , Linhagem Celular , Regulação da Expressão Gênica , Humanos , Microscopia de Fluorescência , Miócitos Cardíacos/citologia , Células-Tronco Pluripotentes/metabolismo , RNA/química , RNA/isolamento & purificação , Análise de Sequência de RNA , Troponina I/metabolismo , Troponina T/metabolismo , Via de Sinalização Wnt
15.
Mol Ther Methods Clin Dev ; 1: 14015, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-26015959

RESUMO

Broader implementation of cell-based therapies has been hindered by the logistics associated with the expansion of clinically relevant cell numbers ex vivo. To overcome this limitation, Wilson Wolf Manufacturing developed the G-Rex, a cell culture flask with a gas-permeable membrane at the base that supports large media volumes without compromising gas exchange. Although this culture platform has recently gained traction with the scientific community due to its superior performance when compared with traditional culture systems, the limits of this technology have yet to be explored. In this study, we investigated multiple variables including optimal seeding density and media volume, as well as maximum cell output per unit of surface area. Additionally, we have identified a novel means of estimating culture growth kinetics. All of these parameters were subsequently integrated into a novel G-Rex "M" series, which can accommodate these optimal conditions. A multicenter study confirmed that this fully optimized cell culture system can reliably produce a 100-fold cell expansion in only 10 days using 1L of medium. The G-Rex M series is linearly scalable and adaptable as a closed system, allowing an easy translation of preclinical protocols into the good manufacturing practice.

16.
Stem Cell Res Ther ; 4(2): 25, 2013 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-23672848

RESUMO

Parkinson's disease (PD) is a common debilitating neurodegenerative disease. The motor symptoms of PD are caused mainly by a progressive loss of dopaminergic neurons from the substania nigra, resulting in a loss of dopamine production. Current therapies are palliative and, in the long term, ineffective. In addition, some can result in significant clinical side effects. The relatively localized pathology of PD makes it an ideal candidate for cell replacement therapy. Initial efforts focused on fetal cell transplantation, and significant clinical benefit lasting more than 10 years has been reported in some cases. However, the approach is controversial and results have been inconsistent. Inherent limitations of this approach for widespread use are the limited availability and variability of transplant material. In contrast, the self-renewal and differentiation potential of human pluripotent stem cells (hPSCs) make them a promising alternative cell source for cell replacement therapy for PD. Efforts in the past decade have demonstrated that hPSCs can be induced to differentiate in culture to functional dopaminergic neurons. Studies in delivering these cells into PD animal models have demonstrated survival, engraftment, and behavioral deficit improvements. Several groups are developing these cells with clinical trials in mind. Here, we review the state of the technology and consider the suitability of current manufacturing processes, cell purity, and tumorgenicity for clinical testing.


Assuntos
Doença de Parkinson/terapia , Células-Tronco Pluripotentes/transplante , Animais , Terapia Baseada em Transplante de Células e Tecidos , Neurônios Dopaminérgicos/citologia , Neurônios Dopaminérgicos/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/transplante , Doença de Parkinson/patologia , Células-Tronco Pluripotentes/citologia
17.
Sci Transl Med ; 5(184): 184ra59, 2013 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-23658244

RESUMO

High-grade gliomas are extremely difficult to treat because they are invasive and therefore not curable by surgical resection; the toxicity of current chemo- and radiation therapies limits the doses that can be used. Neural stem cells (NSCs) have inherent tumor-tropic properties that enable their use as delivery vehicles to target enzyme/prodrug therapy selectively to tumors. We used a cytosine deaminase (CD)-expressing clonal human NSC line, HB1.F3.CD, to home to gliomas in mice and locally convert the prodrug 5-fluorocytosine to the active chemotherapeutic 5-fluorouracil. In vitro studies confirmed that the NSCs have normal karyotype, tumor tropism, and CD expression, and are genetically and functionally stable. In vivo biodistribution studies demonstrated NSC retention of tumor tropism, even in mice pretreated with radiation or dexamethasone to mimic clinically relevant adjuvant therapies. We evaluated safety and toxicity after intracerebral administration of the NSCs in non-tumor-bearing and orthotopic glioma-bearing immunocompetent and immunodeficient mice. We detected no difference in toxicity associated with conversion of 5-fluorocytosine to 5-fluorouracil, no NSCs outside the brain, and no histological evidence of pathology or tumorigenesis attributable to the NSCs. The average tumor volume in mice that received HB1.F3.CD NSCs and 5-fluorocytosine was about one-third that of the average volume in control mice. On the basis of these results, we conclude that combination therapy with HB1.F3.CD NSCs and 5-fluorocytosine is safe, nontoxic, and effective in mice. These data have led to approval of a first-in-human study of an allogeneic NSC-mediated enzyme/prodrug-targeted cancer therapy in patients with recurrent high-grade glioma.


Assuntos
Glioma/tratamento farmacológico , Glioma/terapia , Células-Tronco Neurais/citologia , Pró-Fármacos/uso terapêutico , Animais , Linhagem Celular , Citosina Desaminase/metabolismo , Feminino , Citometria de Fluxo , Flucitosina/metabolismo , Flucitosina/uso terapêutico , Fluoruracila/metabolismo , Humanos , Masculino , Camundongos , Camundongos Nus , Células-Tronco Neurais/metabolismo , Pró-Fármacos/metabolismo
19.
Stem Cell Res ; 8(3): 388-402, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22459095

RESUMO

Suspension bioreactors are an attractive alternative to static culture of human embryonic stem cells (hESCs) for the generation of clinically relevant cell numbers in a controlled system. In this study, we have developed a scalable suspension culture system using serum-free defined media with spinner flasks for hESC expansion as cell aggregates. With optimized cell seeding density and splitting interval, we demonstrate prolonged passaging and expansion of several hESC lines with overall expansion, yield, viability and maintenance of pluripotency equivalent to adherent culture. Human ESCs maintained in suspension as aggregates can be passaged at least 20 times to achieve over 1×10(13) fold calculated expansion with high undifferentiation rate and normal karyotype. Furthermore, the aggregates are able to differentiate to cardiomyocytes in a directed fashion. Finally, we show that the cells can be cryopreserved in serum-free medium and thawed into adherent or suspension cultures to continue passaging and expansion. We have successfully used this method under cGMP or cGMP-equivalent conditions to generate cell banks of several hESC lines. Taken together, our suspension culture system provides a powerful approach for scale-up expansion of hESCs under defined and serum-free conditions for clinical and research applications.


Assuntos
Técnicas de Cultura de Células/métodos , Técnicas de Cultura de Células/normas , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Reatores Biológicos/normas , Diferenciação Celular , Células Cultivadas , Criopreservação , Meios de Cultura Livres de Soro , Humanos , Cariotipagem , Miócitos Cardíacos/citologia
20.
Methods Mol Biol ; 767: 147-59, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21822873

RESUMO

Human pluripotent stem cells (PSCs), which include human embryonic stem cells (ESCs) as well as induced pluripotent stem cells (iPSCs), represent an important source of cellular therapies in regenerative medicine and the study of early human development. As such, it is becoming increasingly important to develop methods for the large-scale banking of human PSC lines. There are several well-established methods for the propagation of human PSCs. The key to development of a good manufacturing practice (GMP) bank is to determine a manufacturing method that is amenable to large-scale production using materials that are fully documented. We have developed several banks of hESCs using animal feeder cells, animal-based matrices, or animal-free matrices. Protocols for growing hESCs on mouse embryonic fibroblasts (MEFs) are well established and are very helpful for producing research grade banks of cells. As most human ESCs cultured by research laboratories have been exposed to xenogeneic reagents, it is not imperative that all materials used in the production of a master cell bank be animal-free in origin. Nevertheless, as the field develops, it will no doubt become increasingly important to produce a bank of cells for clinical use without xenogeneic reagents, particularly nonhuman feeder cells which might harbor viruses with potential risk to human health or cell product integrity. Thus, even for cell lines previously exposed to xenogeneic reagents, it is important to minimize any subsequent exposure of the cell lines to additional adventitious agents. We have specifically described procedures for the growth of hESCs on Matrigel, an animal-matrix, and CELLstart, an animal-free matrix, and these can be used to produce hESCs as part of a clinical manufacturing process.


Assuntos
Bancos de Espécimes Biológicos , Técnicas de Cultura de Células/métodos , Técnicas de Cultura de Células/normas , Células-Tronco Pluripotentes/citologia , Transplante de Células-Tronco/métodos , Animais , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Colágeno/farmacologia , Criopreservação , Combinação de Medicamentos , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/efeitos dos fármacos , Humanos , Laminina/farmacologia , Camundongos , Células-Tronco Pluripotentes/efeitos dos fármacos , Proteoglicanas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA