Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 114
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(17): e2320239121, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38630721

RESUMO

Collective motion is ubiquitous in nature; groups of animals, such as fish, birds, and ungulates appear to move as a whole, exhibiting a rich behavioral repertoire that ranges from directed movement to milling to disordered swarming. Typically, such macroscopic patterns arise from decentralized, local interactions among constituent components (e.g., individual fish in a school). Preeminent models of this process describe individuals as self-propelled particles, subject to self-generated motion and "social forces" such as short-range repulsion and long-range attraction or alignment. However, organisms are not particles; they are probabilistic decision-makers. Here, we introduce an approach to modeling collective behavior based on active inference. This cognitive framework casts behavior as the consequence of a single imperative: to minimize surprise. We demonstrate that many empirically observed collective phenomena, including cohesion, milling, and directed motion, emerge naturally when considering behavior as driven by active Bayesian inference-without explicitly building behavioral rules or goals into individual agents. Furthermore, we show that active inference can recover and generalize the classical notion of social forces as agents attempt to suppress prediction errors that conflict with their expectations. By exploring the parameter space of the belief-based model, we reveal nontrivial relationships between the individual beliefs and group properties like polarization and the tendency to visit different collective states. We also explore how individual beliefs about uncertainty determine collective decision-making accuracy. Finally, we show how agents can update their generative model over time, resulting in groups that are collectively more sensitive to external fluctuations and encode information more robustly.


Assuntos
Comportamento de Massa , Modelos Biológicos , Animais , Teorema de Bayes , Movimento , Movimento (Física) , Peixes , Comportamento Social , Comportamento Animal
2.
Proc Natl Acad Sci U S A ; 120(11): e2206163120, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36897970

RESUMO

How collectives remain coordinated as they grow in size is a fundamental challenge affecting systems ranging from biofilms to governments. This challenge is particularly apparent in multicellular organisms, where coordination among a vast number of cells is vital for coherent animal behavior. However, the earliest multicellular organisms were decentralized, with indeterminate sizes and morphologies, as exemplified by Trichoplax adhaerens, arguably the earliest-diverged and simplest motile animal. We investigated coordination among cells in T. adhaerens by observing the degree of collective order in locomotion across animals of differing sizes and found that larger individuals exhibit increasingly disordered locomotion. We reproduced this effect of size on order through a simulation model of active elastic cellular sheets and demonstrate that this relationship is best recapitulated across all body sizes when the simulation parameters are tuned to a critical point in the parameter space. We quantify the trade-off between increasing size and coordination in a multicellular animal with a decentralized anatomy that shows evidence of criticality and hypothesize as to the implications of this on the evolution hierarchical structures such as nervous systems in larger organisms.


Assuntos
Placozoa , Animais , Placozoa/fisiologia , Tamanho Corporal , Sistema Nervoso Central , Evolução Biológica
3.
Nature ; 568(7753): 477-486, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-31019318

RESUMO

Machines powered by artificial intelligence increasingly mediate our social, cultural, economic and political interactions. Understanding the behaviour of artificial intelligence systems is essential to our ability to control their actions, reap their benefits and minimize their harms. Here we argue that this necessitates a broad scientific research agenda to study machine behaviour that incorporates and expands upon the discipline of computer science and includes insights from across the sciences. We first outline a set of questions that are fundamental to this emerging field and then explore the technical, legal and institutional constraints on the study of machine behaviour.


Assuntos
Inteligência Artificial , Inteligência Artificial/legislação & jurisprudência , Inteligência Artificial/tendências , Humanos , Motivação , Robótica
4.
Phys Biol ; 21(2)2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38266294

RESUMO

A fundamental question in complex systems is how to relate interactions between individual components ('microscopic description') to the global properties of the system ('macroscopic description'). Furthermore, it is unclear whether such a macroscopic description exists and if such a description can capture large-scale properties. Here, we address the validity of a macroscopic description of a complex biological system using the collective motion of desert locusts as a canonical example. One of the world's most devastating insect plagues begins when flightless juvenile locusts form 'marching bands'. These bands display remarkable coordinated motion, moving through semiarid habitats in search of food. We investigated how well macroscopic physical models can describe the flow of locusts within a band. For this, we filmed locusts within marching bands during an outbreak in Kenya and automatically tracked all individuals passing through the camera frame. We first analyzed the spatial topology of nearest neighbors and found individuals to be isotropically distributed. Despite this apparent randomness, a local order was observed in regions of high density in the radial distribution function, akin to an ordered fluid. Furthermore, reconstructing individual locust trajectories revealed a highly aligned movement, consistent with the one-dimensional version of the Toner-Tu equations, a generalization of the Navier-Stokes equations for fluids, used to describe the equivalent macroscopic fluid properties of active particles. Using this effective Toner-Tu equation, which relates the gradient of the pressure to the acceleration, we show that the effective 'pressure' of locusts increases as a linear function of density in segments with the highest polarization (for which the one-dimensional approximation is most appropriate). Our study thus demonstrates an effective hydrodynamic description of flow dynamics in plague locust swarms.


Assuntos
Gafanhotos , Modelos Biológicos , Animais , Humanos , Hidrodinâmica , Movimento , Movimento (Física)
5.
Proc Natl Acad Sci U S A ; 118(17)2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33893232

RESUMO

An inherent strength of evolved collective systems is their ability to rapidly adapt to dynamic environmental conditions, offering resilience in the face of disruption. This is thought to arise when individual sensory inputs are filtered through local interactions, producing an adaptive response at the group level. To understand how simple rules encoded at the individual level can lead to the emergence of robust group-level (or distributed) control, we examined structures we call "scaffolds," self-assembled by Eciton burchellii army ants on inclined surfaces that aid travel during foraging and migration. We conducted field experiments with wild E. burchellii colonies, manipulating the slope over which ants traversed, to examine the formation of scaffolds and their effects on foraging traffic. Our results show that scaffolds regularly form on inclined surfaces and that they reduce losses of foragers and prey, by reducing slipping and/or falling of ants, thus facilitating traffic flow. We describe the relative effects of environmental geometry and traffic on their growth and present a theoretical model to examine how the individual behaviors underlying scaffold formation drive group-level effects. Our model describes scaffold growth as a control response at the collective level that can emerge from individual error correction, requiring no complex communication among ants. We show that this model captures the dynamics observed in our experiments and is able to predict the growth-and final size-of scaffolds, and we show how the analytical solution allows for estimation of these dynamics.


Assuntos
Formigas/fisiologia , Comportamento Animal/fisiologia , Comportamento Cooperativo , Animais , Formigas/metabolismo , Comportamento Alimentar , Comportamento Social
6.
Proc Natl Acad Sci U S A ; 118(50)2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34880130

RESUMO

Choosing among spatially distributed options is a central challenge for animals, from deciding among alternative potential food sources or refuges to choosing with whom to associate. Using an integrated theoretical and experimental approach (employing immersive virtual reality), we consider the interplay between movement and vectorial integration during decision-making regarding two, or more, options in space. In computational models of this process, we reveal the occurrence of spontaneous and abrupt "critical" transitions (associated with specific geometrical relationships) whereby organisms spontaneously switch from averaging vectorial information among, to suddenly excluding one among, the remaining options. This bifurcation process repeats until only one option-the one ultimately selected-remains. Thus, we predict that the brain repeatedly breaks multichoice decisions into a series of binary decisions in space-time. Experiments with fruit flies, desert locusts, and larval zebrafish reveal that they exhibit these same bifurcations, demonstrating that across taxa and ecological contexts, there exist fundamental geometric principles that are essential to explain how, and why, animals move the way they do.


Assuntos
Comportamento Animal , Tomada de Decisões , Modelos Teóricos , Comportamento Social , Animais , Drosophila melanogaster , Gafanhotos , Larva , Atividade Motora , Peixe-Zebra
7.
Proc Natl Acad Sci U S A ; 118(27)2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-34155097

RESUMO

Collective behavior provides a framework for understanding how the actions and properties of groups emerge from the way individuals generate and share information. In humans, information flows were initially shaped by natural selection yet are increasingly structured by emerging communication technologies. Our larger, more complex social networks now transfer high-fidelity information over vast distances at low cost. The digital age and the rise of social media have accelerated changes to our social systems, with poorly understood functional consequences. This gap in our knowledge represents a principal challenge to scientific progress, democracy, and actions to address global crises. We argue that the study of collective behavior must rise to a "crisis discipline" just as medicine, conservation, and climate science have, with a focus on providing actionable insight to policymakers and regulators for the stewardship of social systems.


Assuntos
Comportamento , Comportamento Cooperativo , Internacionalidade , Algoritmos , Comunicação , Humanos , Rede Social
8.
Phys Biol ; 20(4)2023 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-37141898

RESUMO

While moving, animals must frequently make decisions about their future travel direction, whether they are alone or in a group. Here we investigate this process for zebrafish (Danio rerio), which naturally move in cohesive groups. Employing state-of-the-art virtual reality, we study how real fish (RF) follow one or several moving, virtual conspecifics (leaders). These data are used to inform, and test, a model of social response that includes a process of explicit decision-making, whereby the fish can decide which of the virtual conspecifics to follow, or to follow in some average direction. This approach is in contrast with previous models where the direction of motion was based on a continuous computation, such as directional averaging. Building upon a simplified version of this model (Sridharet al2021Proc. Natl Acad. Sci.118e2102157118), which was limited to a one-dimensional projection of the fish motion, we present here a model that describes the motion of the RF as it swims freely in two-dimensions. Motivated by experimental observations, the swim speed of the fish in this model uses a burst-and-coast swimming pattern, with the burst frequency being dependent on the distance of the fish from the followed conspecific(s). We demonstrate that this model is able to explain the observed spatial distribution of the RF behind the virtual conspecifics in the experiments, as a function of their average speed and number. In particular, the model naturally explains the observed critical bifurcations for a freely swimming fish, which appear in the spatial distributions whenever the fish makes a decision to follow only one of the virtual conspecifics, instead of following them as an averaged group. This model can provide the foundation for modeling a cohesive shoal of swimming fish, while explicitly describing their directional decision-making process at the individual level.


Assuntos
Comportamento Social , Peixe-Zebra , Animais , Peixe-Zebra/fisiologia , Comportamento Animal/fisiologia , Movimento , Natação , Cognição
9.
J Anim Ecol ; 92(7): 1357-1371, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36945122

RESUMO

Methods for collecting animal behaviour data in natural environments, such as direct observation and biologging, are typically limited in spatiotemporal resolution, the number of animals that can be observed and information about animals' social and physical environments. Video imagery can capture rich information about animals and their environments, but image-based approaches are often impractical due to the challenges of processing large and complex multi-image datasets and transforming resulting data, such as animals' locations, into geographical coordinates. We demonstrate a new system for studying behaviour in the wild that uses drone-recorded videos and computer vision approaches to automatically track the location and body posture of free-roaming animals in georeferenced coordinates with high spatiotemporal resolution embedded in contemporaneous 3D landscape models of the surrounding area. We provide two worked examples in which we apply this approach to videos of gelada monkeys and multiple species of group-living African ungulates. We demonstrate how to track multiple animals simultaneously, classify individuals by species and age-sex class, estimate individuals' body postures (poses) and extract environmental features, including topography of the landscape and animal trails. By quantifying animal movement and posture while reconstructing a detailed 3D model of the landscape, our approach opens the door to studying the sensory ecology and decision-making of animals within their natural physical and social environments.


Assuntos
Movimento , Dispositivos Aéreos não Tripulados , Animais , Postura , Ecologia/métodos , Computadores
10.
Proc Natl Acad Sci U S A ; 116(41): 20556-20561, 2019 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-31548427

RESUMO

The need to make fast decisions under risky and uncertain conditions is a widespread problem in the natural world. While there has been extensive work on how individual organisms dynamically modify their behavior to respond appropriately to changing environmental conditions (and how this is encoded in the brain), we know remarkably little about the corresponding aspects of collective information processing in animal groups. For example, many groups appear to show increased "sensitivity" in the presence of perceived threat, as evidenced by the increased frequency and magnitude of repeated cascading waves of behavioral change often observed in fish schools and bird flocks under such circumstances. How such context-dependent changes in collective sensitivity are mediated, however, is unknown. Here we address this question using schooling fish as a model system, focusing on 2 nonexclusive hypotheses: 1) that changes in collective responsiveness result from changes in how individuals respond to social cues (i.e., changes to the properties of the "nodes" in the social network), and 2) that they result from changes made to the structural connectivity of the network itself (i.e., the computation is encoded in the "edges" of the network). We find that despite the fact that perceived risk increases the probability for individuals to initiate an alarm, the context-dependent change in collective sensitivity predominantly results not from changes in how individuals respond to social cues, but instead from how individuals modify the spatial structure, and correspondingly the topology of the network of interactions, within the group. Risk is thus encoded as a collective property, emphasizing that in group-living species individual fitness can depend strongly on coupling between scales of behavioral organization.


Assuntos
Comunicação Animal , Comportamento Animal/fisiologia , Peixes/fisiologia , Processos Grupais , Dinâmica Populacional , Reflexo de Sobressalto/fisiologia , Comportamento Social , Animais , Tomada de Decisões , Modelos Biológicos
11.
Proc Natl Acad Sci U S A ; 115(48): 12224-12228, 2018 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-30420510

RESUMO

To evade their predators, animals must quickly detect potential threats, gauge risk, and mount a response. Putative neural circuits responsible for these tasks have been isolated in laboratory studies. However, it is unclear whether and how these circuits combine to generate the flexible, dynamic sequences of evasion behavior exhibited by wild, freely moving animals. Here, we report that evasion behavior of wild fish on a coral reef is generated through a sequence of well-defined decision rules that convert visual sensory input into behavioral actions. Using an automated system to present visual threat stimuli to fish in situ, we show that individuals initiate escape maneuvers in response to the perceived size and expansion rate of an oncoming threat using a decision rule that matches dynamics of known loom-sensitive neural circuits. After initiating an evasion maneuver, fish adjust their trajectories using a control rule based on visual feedback to steer away from the threat and toward shelter. These decision rules accurately describe evasion behavior of fish from phylogenetically distant families, illustrating the conserved nature of escape decision-making. Our results reveal how the flexible behavioral responses required for survival can emerge from relatively simple, conserved decision-making mechanisms.


Assuntos
Peixes/fisiologia , Animais , Animais Selvagens/fisiologia , Recifes de Corais , Tomada de Decisões , Reação de Fuga , Peixes/classificação , Comportamento Predatório , Natação , Visão Ocular
12.
Nat Methods ; 14(10): 995-1002, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28825703

RESUMO

Standard animal behavior paradigms incompletely mimic nature and thus limit our understanding of behavior and brain function. Virtual reality (VR) can help, but it poses challenges. Typical VR systems require movement restrictions but disrupt sensorimotor experience, causing neuronal and behavioral alterations. We report the development of FreemoVR, a VR system for freely moving animals. We validate immersive VR for mice, flies, and zebrafish. FreemoVR allows instant, disruption-free environmental reconfigurations and interactions between real organisms and computer-controlled agents. Using the FreemoVR platform, we established a height-aversion assay in mice and studied visuomotor effects in Drosophila and zebrafish. Furthermore, by photorealistically mimicking zebrafish we discovered that effective social influence depends on a prospective leader balancing its internally preferred directional choice with social interaction. FreemoVR technology facilitates detailed investigations into neural function and behavior through the precise manipulation of sensorimotor feedback loops in unrestrained animals.


Assuntos
Drosophila melanogaster/fisiologia , Camundongos/fisiologia , Atividade Motora , Comportamento Espacial , Interface Usuário-Computador , Peixe-Zebra/fisiologia , Animais , Comportamento Animal , Masculino , Camundongos Endogâmicos C57BL
13.
PLoS Comput Biol ; 13(9): e1005732, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28886010

RESUMO

The evolution of costly cooperation, where cooperators pay a personal cost to benefit others, requires that cooperators interact more frequently with other cooperators. This condition, called positive assortment, is known to occur in spatially-structured viscous populations, where individuals typically have low mobility and limited dispersal. However many social organisms across taxa, from cells and bacteria, to birds, fish and ungulates, are mobile, and live in populations with considerable inter-group mixing. In the absence of information regarding others' traits or conditional strategies, such mixing may inhibit assortment and limit the potential for cooperation to evolve. Here we employ spatially-explicit individual-based evolutionary simulations to incorporate costs and benefits of two coevolving costly traits: cooperative and local cohesive tendencies. We demonstrate that, despite possessing no information about others' traits or payoffs, mobility (via self-propulsion or environmental forcing) facilitates assortment of cooperators via a dynamically evolving difference in the cohesive tendencies of cooperators and defectors. We show analytically that this assortment can also be viewed in a multilevel selection framework, where selection for cooperation among emergent groups can overcome selection against cooperators within the groups. As a result of these dynamics, we find an oscillatory pattern of cooperation and defection that maintains cooperation even in the absence of well known mechanisms such as kin interactions, reciprocity, local dispersal or conditional strategies that require information on others' strategies or payoffs. Our results offer insights into differential adhesion based mechanisms for positive assortment and reveal the possibility of cooperative aggregations in dynamic fission-fusion populations.


Assuntos
Evolução Biológica , Comportamento Cooperativo , Modelos Biológicos , Animais , Movimento Celular , Biologia Computacional , Locomoção , Seleção Genética
14.
Proc Natl Acad Sci U S A ; 112(49): 15113-8, 2015 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-26598673

RESUMO

The ability of individual animals to create functional structures by joining together is rare and confined to the social insects. Army ants (Eciton) form collective assemblages out of their own bodies to perform a variety of functions that benefit the entire colony. Here we examine ?bridges" of linked individuals that are constructed to span gaps in the colony's foraging trail. How these living structures adjust themselves to varied and changing conditions remains poorly understood. Our field experiments show that the ants continuously modify their bridges, such that these structures lengthen, widen, and change position in response to traffic levels and environmental geometry. Ants initiate bridges where their path deviates from their incoming direction and move the bridges over time to create shortcuts over large gaps. The final position of the structure depended on the intensity of the traffic and the extent of path deviation and was influenced by a cost-benefit trade-off at the colony level, where the benefit of increased foraging trail efficiency was balanced by the cost of removing workers from the foraging pool to form the structure. To examine this trade-off, we quantified the geometric relationship between costs and benefits revealed by our experiments. We then constructed a model to determine the bridge location that maximized foraging rate, which qualitatively matched the observed movement of bridges. Our results highlight how animal self-assemblages can be dynamically modified in response to a group-level cost-benefit trade-off, without any individual unit's having information on global benefits or costs.


Assuntos
Formigas/fisiologia , Análise Custo-Benefício , Animais , Comportamento Alimentar
15.
Proc Natl Acad Sci U S A ; 112(15): 4690-5, 2015 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-25825752

RESUMO

Coordination among social animals requires rapid and efficient transfer of information among individuals, which may depend crucially on the underlying structure of the communication network. Establishing the decision-making circuits and networks that give rise to individual behavior has been a central goal of neuroscience. However, the analogous problem of determining the structure of the communication network among organisms that gives rise to coordinated collective behavior, such as is exhibited by schooling fish and flocking birds, has remained almost entirely neglected. Here, we study collective evasion maneuvers, manifested through rapid waves, or cascades, of behavioral change (a ubiquitous behavior among taxa) in schooling fish (Notemigonus crysoleucas). We automatically track the positions and body postures, calculate visual fields of all individuals in schools of ∼150 fish, and determine the functional mapping between socially generated sensory input and motor response during collective evasion. We find that individuals use simple, robust measures to assess behavioral changes in neighbors, and that the resulting networks by which behavior propagates throughout groups are complex, being weighted, directed, and heterogeneous. By studying these interaction networks, we reveal the (complex, fractional) nature of social contagion and establish that individuals with relatively few, but strongly connected, neighbors are both most socially influential and most susceptible to social influence. Furthermore, we demonstrate that we can predict complex cascades of behavioral change at their moment of initiation, before they actually occur. Consequently, despite the intrinsic stochasticity of individual behavior, establishing the hidden communication networks in large self-organized groups facilitates a quantitative understanding of behavioral contagion.


Assuntos
Comunicação Animal , Cyprinidae/fisiologia , Reflexo de Sobressalto/fisiologia , Comportamento Social , Algoritmos , Animais , Modelos Biológicos , Comportamento Espacial/fisiologia , Natação/fisiologia , Gravação de Videoteipe
16.
Behav Res Methods ; 50(4): 1673-1685, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29464590

RESUMO

Collective behaviors are observed throughout nature, from bacterial colonies to human societies. Important theoretical breakthroughs have recently been made in understanding why animals produce group behaviors and how they coordinate their activities, build collective structures, and make decisions. However, standardized experimental methods to test these findings have been lacking. Notably, easily and unambiguously determining the membership of a group and the responses of an individual within that group is still a challenge. The radial arm maze is presented here as a new standardized method to investigate collective exploration and decision-making in animal groups. This paradigm gives individuals within animal groups the opportunity to make choices among a set of discrete alternatives, and these choices can easily be tracked over long periods of time. We demonstrate the usefulness of this paradigm by performing a set of refuge-site selection experiments with groups of fish. Using an open-source, robust custom image-processing algorithm, we automatically counted the number of animals in each arm of the maze to identify the majority choice. We also propose a new index to quantify the degree of group cohesion in this context. The radial arm maze paradigm provides an easy way to categorize and quantify the choices made by animals. It makes it possible to readily apply the traditional uses of the radial arm maze with single animals to the study of animal groups. Moreover, it opens up the possibility of studying questions specifically related to collective behaviors.


Assuntos
Comportamento Animal/fisiologia , Pesquisa Comportamental/métodos , Comportamento Social , Animais , Comportamento de Escolha/fisiologia , Tomada de Decisões/fisiologia , Relações Interpessoais
17.
Nature ; 471(7339): E1-4; author reply E9-10, 2011 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-21430721

RESUMO

Arising from M. A. Nowak, C. E. Tarnita & E. O. Wilson 466, 1057-1062 (2010); Nowak et al. reply. Nowak et al. argue that inclusive fitness theory has been of little value in explaining the natural world, and that it has led to negligible progress in explaining the evolution of eusociality. However, we believe that their arguments are based upon a misunderstanding of evolutionary theory and a misrepresentation of the empirical literature. We will focus our comments on three general issues.


Assuntos
Altruísmo , Evolução Biológica , Aptidão Genética , Modelos Biológicos , Seleção Genética , Animais , Comportamento Cooperativo , Feminino , Teoria dos Jogos , Genética Populacional , Hereditariedade , Humanos , Masculino , Fenótipo , Reprodutibilidade dos Testes , Razão de Masculinidade
18.
Phys Rev Lett ; 116(3): 038701, 2016 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-26849620

RESUMO

In recent years, a large body of research has focused on unveiling the fundamental physical processes that living systems utilize to perform functions, such as coordinated action and collective decision making. Here, we demonstrate that important features of collective decision making among higher organisms are captured effectively by a novel formulation of well-characterized physical spin systems, where the spin state is equivalent to two opposing preferences, and a bias in the preferred state represents the strength of individual opinions. We reveal that individuals (spins) without a preference (unbiased or uninformed) play a central role in collective decision making, both in maximizing the ability of the system to achieve consensus (via enhancement of the propagation of spin states) and in minimizing the time taken to do so (via a process reminiscent of stochastic resonance). Which state (option) is selected collectively, however, is shown to depend strongly on the nonlinearity of local interactions. Relatively linear social response results in unbiased individuals reinforcing the majority preference, even in the face of a strongly biased numerical minority (thus promoting democratic outcomes). If interactions are highly nonlinear, however, unbiased individuals exert the opposite influence, promoting a strongly biased minority and inhibiting majority preference. These results enhance our understanding of physical computation in biological collectives and suggest new avenues to explore in the collective dynamics of spin systems.

19.
Proc Natl Acad Sci U S A ; 110(13): 5263-8, 2013 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-23440218

RESUMO

During consensus decision making, individuals in groups balance personal information (based on their own past experiences) with social information (based on the behavior of other individuals), allowing the group to reach a single collective choice. Previous studies of consensus decision making processes have focused on the informational aspects of behavioral choice, assuming that individuals make choices based solely on their likelihood of being beneficial (e.g., rewarded). However, decisions by both humans and nonhuman animals systematically violate such expectations. Furthermore, the typical experimental paradigm of assessing binary decisions, those between two mutually exclusive options, confounds two aspects common to most group decisions: minimizing uncertainty (through the use of personal and social information) and maintaining group cohesion (for example, to reduce predation risk). Here we experimentally disassociate cohesion-based decisions from information-based decisions using a three-choice paradigm and demonstrate that both factors are crucial to understanding the collective decision making of schooling fish. In addition, we demonstrate how multiple informational dimensions (here color and stripe orientation) are integrated within groups to achieve consensus, even though no individual is explicitly aware of, or has a unique preference for, the consensus option. Balancing of personal information and social cues by individuals in key frontal positions in the group is shown to be essential for such group-level capabilities. Our results demonstrate the importance of integrating informational with other social considerations when explaining the collective capabilities of group-living animals.


Assuntos
Comportamento Animal/fisiologia , Comportamento Cooperativo , Cyprinidae/fisiologia , Tomada de Decisões/fisiologia , Animais , Feminino , Masculino
20.
Am Nat ; 186(2): 284-93, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26655156

RESUMO

Leadership is widespread across the animal kingdom. In self-organizing groups, such as fish schools, theoretical models predict that effective leaders need to balance goal-oriented motion, such as toward a known resource, with their tendency to be social. Increasing goal orientation is predicted to increase decision speed and accuracy, but it is also predicted to increase the risk of the group splitting. To test these key predictions, we trained fish (golden shiners, Notemigonus crysoleucas) to associate a spatial target with a food reward ("informed" individuals) before testing each singly with a group of eight untrained fish who were uninformed ("naive") about the target. Informed fish that exhibited faster and straighter paths (indicative of greater goal orientation) were more likely to reach their preferred target and did so more quickly. However, such behavior was associated with a tendency to leave untrained fish behind and, therefore, with failure to transmit their preference to others. Either all or none of the untrained fish stayed with the trained fish in the majority of trials. Using a simple model of self-organized coordination and leadership in groups, we recreate these features of leadership observed experimentally, including the apparent consensus behavior among naive individuals. Effective leadership thus requires informed individuals to appropriately balance goal-oriented and socially oriented behavior.


Assuntos
Comportamento Animal , Cyprinidae/fisiologia , Comportamento Social , Animais , Objetivos , Movimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA