Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(12): e2202074120, 2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36930602

RESUMO

Complex astrophysical systems often exhibit low-scatter relations between observable properties (e.g., luminosity, velocity dispersion, oscillation period). These scaling relations illuminate the underlying physics, and can provide observational tools for estimating masses and distances. Machine learning can provide a fast and systematic way to search for new scaling relations (or for simple extensions to existing relations) in abstract high-dimensional parameter spaces. We use a machine learning tool called symbolic regression (SR), which models patterns in a dataset in the form of analytic equations. We focus on the Sunyaev-Zeldovich flux-cluster mass relation (YSZ - M), the scatter in which affects inference of cosmological parameters from cluster abundance data. Using SR on the data from the IllustrisTNG hydrodynamical simulation, we find a new proxy for cluster mass which combines YSZ and concentration of ionized gas (cgas): M ∝ Yconc3/5 ≡ YSZ3/5(1 - A cgas). Yconc reduces the scatter in the predicted M by ∼20 - 30% for large clusters (M ≳ 1014 h-1 M⊙), as compared to using just YSZ. We show that the dependence on cgas is linked to cores of clusters exhibiting larger scatter than their outskirts. Finally, we test Yconc on clusters from CAMELS simulations and show that Yconc is robust against variations in cosmology, subgrid physics, and cosmic variance. Our results and methodology can be useful for accurate multiwavelength cluster mass estimation from upcoming CMB and X-ray surveys like ACT, SO, eROSITA and CMB-S4.

2.
Proc Natl Acad Sci U S A ; 118(40)2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34599094

RESUMO

We introduce a Bayesian neural network model that can accurately predict not only if, but also when a compact planetary system with three or more planets will go unstable. Our model, trained directly from short N-body time series of raw orbital elements, is more than two orders of magnitude more accurate at predicting instability times than analytical estimators, while also reducing the bias of existing machine learning algorithms by nearly a factor of three. Despite being trained on compact resonant and near-resonant three-planet configurations, the model demonstrates robust generalization to both nonresonant and higher multiplicity configurations, in the latter case outperforming models fit to that specific set of integrations. The model computes instability estimates up to [Formula: see text] times faster than a numerical integrator, and unlike previous efforts provides confidence intervals on its predictions. Our inference model is publicly available in the SPOCK (https://github.com/dtamayo/spock) package, with training code open sourced (https://github.com/MilesCranmer/bnn_chaos_model).

3.
Proc Natl Acad Sci U S A ; 117(31): 18194-18205, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32675234

RESUMO

We combine analytical understanding of resonant dynamics in two-planet systems with machine-learning techniques to train a model capable of robustly classifying stability in compact multiplanet systems over long timescales of [Formula: see text] orbits. Our Stability of Planetary Orbital Configurations Klassifier (SPOCK) predicts stability using physically motivated summary statistics measured in integrations of the first [Formula: see text] orbits, thus achieving speed-ups of up to [Formula: see text] over full simulations. This computationally opens up the stability-constrained characterization of multiplanet systems. Our model, trained on ∼100,000 three-planet systems sampled at discrete resonances, generalizes both to a sample spanning a continuous period-ratio range, as well as to a large five-planet sample with qualitatively different configurations to our training dataset. Our approach significantly outperforms previous methods based on systems' angular momentum deficit, chaos indicators, and parametrized fits to numerical integrations. We use SPOCK to constrain the free eccentricities between the inner and outer pairs of planets in the Kepler-431 system of three approximately Earth-sized planets to both be below 0.05. Our stability analysis provides significantly stronger eccentricity constraints than currently achievable through either radial velocity or transit-duration measurements for small planets and within a factor of a few of systems that exhibit transit-timing variations (TTVs). Given that current exoplanet-detection strategies now rarely allow for strong TTV constraints [S. Hadden, T. Barclay, M. J. Payne, M. J. Holman, Astrophys. J. 158, 146 (2019)], SPOCK enables a powerful complementary method for precisely characterizing compact multiplanet systems. We publicly release SPOCK for community use.

4.
Opt Express ; 23(26): 33437-47, 2015 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-26832008

RESUMO

Technological realities limit terrestrial quantum key distribution (QKD) to single-link distances of a few hundred kilometers. One promising avenue for global-scale quantum communication networks is to use low-Earth-orbit satellites. Here we report the first demonstration of QKD from a stationary transmitter to a receiver platform traveling at an angular speed equivalent to a 600 km altitude satellite, located on a moving truck. We overcome the challenges of actively correcting beam pointing, photon polarization and time-of-flight. Our system generates an asymptotic secure key at 40 bits/s.

5.
EPJ Quantum Technol ; 4(1): 10, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-31179201

RESUMO

Single-photon detectors in space must retain useful performance characteristics despite being bombarded with sub-atomic particles. Mitigating the effects of this space radiation is vital to enabling new space applications which require high-fidelity single-photon detection. To this end, we conducted proton radiation tests of various models of avalanche photodiodes (APDs) and one model of photomultiplier tube potentially suitable for satellite-based quantum communications. The samples were irradiated with 106 MeV protons at doses approximately equivalent to lifetimes of 0.6 , 6, 12 and 24 months in a low-Earth polar orbit. Although most detection properties were preserved, including efficiency, timing jitter and afterpulsing probability, all APD samples demonstrated significant increases in dark count rate (DCR) due to radiation-induced damage, many orders of magnitude higher than the 200 counts per second (cps) required for ground-to-satellite quantum communications. We then successfully demonstrated the mitigation of this DCR degradation through the use of deep cooling, to as low as - 86 ∘ C . This achieved DCR below the required 200 cps over the 24 months orbit duration. DCR was further reduced by thermal annealing at temperatures of +50 to + 100 ∘ C .

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA