Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Med Virol ; 96(6): e29741, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38922964

RESUMO

Cervical cancer is the fourth most common cancer in women worldwide and is caused by persistent infection with high-risk types of human papillomavirus (HPV). HPV viral load, the amount of HPV DNA in a sample, has been suggested to correlate with cervical disease severity, and with clinical outcome of cervical cancer. In this systematic review, we searched three databases (EMBASE, PubMed, Web of Science) to examine the current evidence on the association between HPV viral load in cervical samples and disease severity, as well as clinical outcome. After exclusion of articles not on HPV, cervical cancer, or containing clinical outcomes, 85 original studies involving 173 746 women were included. The vast majority (73/85 = 85.9%) reported that a higher viral load was correlated with higher disease severity or worse clinical outcome. Several studies reported either no correlation (3/85 = 3.5%), or the opposite correlation (9/85 = 10.6%); possible reasons being different categorization of HPV viral load levels, or the use of specific sampling methods. Despite variations in study design and populations, the above findings suggest that HPV viral load is correlated to clinical outcome, and may become an important biomarker for treatment selection and response monitoring for cervical cancer.


Assuntos
Papillomaviridae , Infecções por Papillomavirus , Neoplasias do Colo do Útero , Carga Viral , Humanos , Feminino , Infecções por Papillomavirus/virologia , Papillomaviridae/genética , Papillomaviridae/isolamento & purificação , Papillomaviridae/classificação , Neoplasias do Colo do Útero/virologia , Índice de Gravidade de Doença , DNA Viral , Doenças do Colo do Útero/virologia , Papillomavirus Humano
2.
Int J Hyperthermia ; 40(1): 2157498, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36755433

RESUMO

PURPOSE: In nonmuscle invasive bladder cancer (NMIBC) patients who fail standard intravesical treatment and are unfit or unwilling to undergo a radical cystectomy, radiofrequency (RF)-induced hyperthermia combined with intravesical chemotherapy (RF-CHT) has shown promising results. We studied whether higher thermal dose improves clinical NMIBC outcome. METHODS AND MATERIALS: The cohort comprised 108 patients who started with RF-CHT between November 2013 and December 2019. Patients received intravesical mitomycin-C or epirubicin. Bladder hyperthermia was accomplished with an intravesical 915 MHz RF device guided by intravesical thermometry. We assessed the association between thermal dose parameters (including median temperature and Cumulative Equivalent Minutes of T50 at 43 °C [CEM43T50]) and complete response (CR) at six months for patients with (concomitant) carcinoma in situ (CIS), and recurrence-free survival (RFS) for patients with papillary disease. RESULTS: Median temperature and CEM43T50 per treatment were 40.9 (IQR 40.8-41.1) °C and 3.1 (IQR 0.9-2.4) minutes, respectively. Analyses showed no association between any thermal dose parameter and CR or RFS (p > 0.05). Less bladder spasms during treatment sessions was associated with increased median temperature and CEM43T50 (adjusted OR 0.01 and 0.34, both p < 0.001). CONCLUSIONS: No significant association between thermal dose and NMIBC outcome was found. Possibly thermal dose effect in patients of the current cohort exceeds a certain threshold value. On the other hand, occurrence of bladder spasms had a thermal dose limiting effect. We advise to treat patients with temperatures >40.5 °C for at least 45 min while respecting individual tolerability, including occurrence of bladder spasms.


Assuntos
Hipertermia Induzida , Neoplasias da Bexiga Urinária , Humanos , Hipertermia Induzida/métodos , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/patologia , Mitomicina/uso terapêutico , Epirubicina/uso terapêutico , Terapia Combinada , Invasividade Neoplásica , Recidiva Local de Neoplasia/tratamento farmacológico
3.
Int J Hyperthermia ; 40(1): 2218627, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37455017

RESUMO

INTRODUCTION: Hyperthermic IntraPEritoneal Chemotherapy (HIPEC) aims to treat microscopic disease left after CytoReductive Surgery (CRS). Thermal enhancement depends on the temperatures achieved. Since the location of microscopic disease is unknown, a homogeneous treatment is required to completely eradicate the disease while limiting side effects. To ensure homogeneous delivery, treatment planning software has been developed. This study compares simulation results with clinical data and evaluates the impact of nine treatment strategies on thermal and drug distributions. METHODS: For comparison with clinical data, three treatment strategies were simulated with different flow rates (1600-1800mL/min) and inflow temperatures (41.6-43.6 °C). Six additional treatment strategies were simulated, varying the number of inflow catheters, flow direction, and using step-up and step-down heating strategies. Thermal homogeneity and the risk of thermal injury were evaluated. RESULTS: Simulated temperature distributions, core body temperatures, and systemic chemotherapeutic concentrations compared well with literature values. Treatment strategy was found to have a strong influence on the distributions. Additional inflow catheters could improve thermal distributions, provided flow rates are kept sufficiently high (>500 mL/min) for each catheter. High flow rates (1800 mL/min) combined with high inflow temperatures (43.6 °C) could lead to thermal damage, with CEM4310 values of up to 27 min. Step-up and step-down heating strategies allow for high temperatures with reduced risk of thermal damage. CONCLUSION: The planning software provides valuable insight into the effects of different treatment strategies on peritoneal distributions. These strategies are designed to provide homogeneous treatment delivery while limiting thermal injury to normal tissue, thereby optimizing the effectiveness of HIPEC.


Assuntos
Hipertermia Induzida , Neoplasias Peritoneais , Humanos , Quimioterapia Intraperitoneal Hipertérmica , Terapia Combinada , Hipertermia Induzida/métodos , Neoplasias Peritoneais/tratamento farmacológico , Neoplasias Peritoneais/cirurgia , Quimioterapia do Câncer por Perfusão Regional/métodos , Procedimentos Cirúrgicos de Citorredução/métodos
4.
Int J Mol Sci ; 25(1)2023 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-38203594

RESUMO

Temporary elevation of tumor temperature, also known as hyperthermia, is a safe and well-tolerated treatment modality. The efficacy of hyperthermia can be improved by efficient thermosensitizers, and various candidate drugs, including inhibitors of the heat stress response, have been explored in vitro and in animal models, but clinically relevant thermosensitizers are lacking. Here, we employ unbiased in silico approaches to uncover new mechanisms and compounds that could be leveraged to increase the thermosensitivity of cancer cells. We then focus on elesclomol, a well-performing compound, which amplifies cell killing by hyperthermia by 5- to 20-fold in cell lines and outperforms clinically applied chemotherapy when combined with hyperthermia in vitro. Surprisingly, our findings suggest that the thermosensitizing effects of elesclomol are independent of its previously reported modes of action but depend on copper shuttling. Importantly, we show that, like elesclomol, multiple other copper shuttlers can thermosensitize, suggesting that disturbing copper homeostasis could be a general strategy for improving the efficacy of hyperthermia.


Assuntos
Cobre , Hidrazinas , Neoplasias , Animais , Temperatura , Febre , Hipertermia , Neoplasias/tratamento farmacológico
5.
Int J Gynecol Cancer ; 32(3): 288-296, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35046082

RESUMO

Radiotherapy with cisplatin (chemoradiation) is the standard treatment for women with locally advanced cervical cancer. Radiotherapy with deep hyperthermia (thermoradiation) is a well established alternative, but is rarely offered as an alternative to chemoradiation, particularly for patients in whom cisplatin is contraindicated. The scope of this review is to provide an overview of the biological rationale of hyperthermia treatment delivery, including patient workflow, and the clinical effectiveness of hyperthermia as a radiosensitizer in the treatment of cervical cancer. Hyperthermia is especially effective in hypoxic and nutrient deprived areas of the tumor where radiotherapy is less effective. Its radiosensitizing effectiveness depends on the temperature level, duration of treatment, and the time interval between radiotherapy and hyperthermia. High quality hyperthermia treatment requires an experienced team, adequate online adaptive treatment planning, and is preferably performed using a phased array radiative locoregional hyperthermia device to achieve the optimal thermal dose effect. Hyperthermia is well tolerated and generally leads to only mild toxicity, such as patient discomfort. Patients in whom cisplatin is contraindicated should therefore be referred to a hyperthermia center for thermoradiation.


Assuntos
Hipertermia Induzida , Neoplasias do Colo do Útero , Quimiorradioterapia , Cisplatino/uso terapêutico , Terapia Combinada , Feminino , Humanos , Neoplasias do Colo do Útero/patologia
6.
Int J Hyperthermia ; 39(1): 265-277, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35109742

RESUMO

BACKGROUND: Hyperthermia treatment planning is increasingly used in clinical applications and recommended in quality assurance guidelines. Assistance in phase-amplitude steering during treatment requires dedicated software for on-line visualization of SAR/temperature distributions and fast re-optimization in response to hot spots. As such software tools are not yet commercially available, we developed Adapt2Heat for on-line adaptive hyperthermia treatment planning and illustrate possible application by different relevant real patient examples. METHODS: Adapt2Heat was developed as a separate module of the treatment planning software Plan2Heat. Adapt2Heat runs on a Linux operating system and was developed in C++, using the open source Qt, Qwt and VTK libraries. A graphical user interface allows interactive and flexible on-line use of hyperthermia treatment planning. Predicted SAR/temperature distributions and statistics for selected phase-amplitude settings can be visualized instantly and settings can be re-optimized manually or automatically in response to hot spots. RESULTS: Pretreatment planning E-Field, SAR and temperature calculations are performed with Plan2Heat and imported in Adapt2Heat. Examples show that Adapt2Heat can be helpful in assisting with phase-amplitude steering, e.g., by suppressing indicated hot spots. The effects of phase-amplitude adjustments on the tumor and potential hot spot locations are comprehensively visualized, allowing intuitive and flexible assistance by treatment planning during locoregional hyperthermia treatments. CONCLUSION: Adapt2Heat provides an intuitive and flexible treatment planning tool for on-line treatment planning-assisted hyperthermia. Extensive features for visualization and (re-)optimization during treatment allow practical use in many locoregional hyperthermia applications. This type of tools are indispensable for enhancing the quality of hyperthermia treatment delivery.


Assuntos
Hipertermia Induzida , Terapia Assistida por Computador , Humanos , Hipertermia , Planejamento de Assistência ao Paciente , Temperatura
7.
Int J Hyperthermia ; 38(1): 229-240, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33602033

RESUMO

PURPOSE: In pancreatic cancer treatment, hyperthermia can be added to increase efficacy of chemo- and/or radiotherapy. Gas in stomach, intestines and colon is often in close proximity to the target volume. We investigated the impact of variations in gastrointestinal gas (GG) on temperature distributions during simulated hyperthermia treatment (HT). METHODS: We used sets of one CT and eight cone-beam CT (CBCT) scans obtained prior to/during fractionated image-guided radiotherapy in four pancreatic cancer patients. In Plan2Heat, we simulated locoregional heating by an ALBA-4D phased array radiofrequency system and calculated temperature distributions for (i) the segmented CT (sCT), (ii) sCT with GG replaced by muscle (sCT0), (iii) sCT0 with eight different GG distributions as visible on CBCT inserted (sCTCBCT). We calculated cumulative temperature-volume histograms for the clinical target volume (CTV) for all ten temperature distributions for each patient and investigated the relationship between GG volume and change in ΔT50 (temperature increase at 50% of CTV volume). We determined location and volume of normal tissue receiving a high thermal dose. RESULTS: GG volume on CBCT varied greatly (9-991 cm3). ΔT50 increased for increasing GG volume; maximum ΔT50 difference per patient was 0.4-0.6 °C. The risk for GG-associated treatment-limiting hot spots appeared low. Normal tissue high-temperature regions mostly occurred anteriorly; their volume and maximum temperature showed moderate positive correlations with GG volume, while fat-muscle interfaces were associated with higher risks for hot spots. CONCLUSIONS: Considerable changes in volume and position of gastrointestinal gas can occur and are associated with clinically relevant tumor temperature differences.


Assuntos
Hipertermia Induzida , Neoplasias Pancreáticas , Tomografia Computadorizada de Feixe Cônico , Humanos , Hipertermia , Dosagem Radioterapêutica , Temperatura
8.
Int J Hyperthermia ; 38(1): 38-54, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33487083

RESUMO

BACKGROUND: Hyperthermic intraperitoneal chemotherapy (HIPEC) is administered to treat residual microscopic disease after cytoreductive surgery (CRS). During HIPEC, fluid (41-43 °C) is administered and drained through a limited number of catheters, risking thermal and drug heterogeneities within the abdominal cavity that might reduce effectiveness. Treatment planning software provides a unique tool for optimizing treatment delivery. This study aimed to investigate the influence of treatment-specific parameters on the thermal and drug homogeneity in the peritoneal cavity in a computed tomography based rat model. METHOD: We developed computational fluid dynamics (CFD) software simulating the dynamic flow, temperature and drug distribution during oxaliplatin based HIPEC. The influence of location and number of catheters, flow alternations and flow rates on peritoneal temperature and drug distribution were determined. The software was validated using data from experimental rat HIPEC studies. RESULTS: The predicted core temperature and systemic oxaliplatin concentration were comparable to the values found in literature. Adequate placement of catheters, additional inflow catheters and higher flow rates reduced intraperitoneal temperature spatial variation by -1.4 °C, -2.3 °C and -1.2 °C, respectively. Flow alternations resulted in higher temperatures (up to +1.5 °C) over the peritoneal surface. Higher flow rates also reduced the spatial variation of chemotherapy concentration over the peritoneal surface resulting in a more homogeneous effective treatment dose. CONCLUSION: The presented treatment planning software provides unique insights in the dynamics during HIPEC, which enables optimization of treatment-specific parameters and provides an excellent basis for HIPEC treatment planning in human applications.


Assuntos
Hipertermia Induzida , Quimioterapia Intraperitoneal Hipertérmica , Animais , Terapia Combinada , Procedimentos Cirúrgicos de Citorredução , Oxaliplatina , Peritônio , Ratos , Software
9.
Int J Hyperthermia ; 37(1): 711-741, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32579419

RESUMO

The therapeutic application of heat is very effective in cancer treatment. Both hyperthermia, i.e., heating to 39-45 °C to induce sensitization to radiotherapy and chemotherapy, and thermal ablation, where temperatures beyond 50 °C destroy tumor cells directly are frequently applied in the clinic. Achievement of an effective treatment requires high quality heating equipment, precise thermal dosimetry, and adequate quality assurance. Several types of devices, antennas and heating or power delivery systems have been proposed and developed in recent decades. These vary considerably in technique, heating depth, ability to focus, and in the size of the heating focus. Clinically used heating techniques involve electromagnetic and ultrasonic heating, hyperthermic perfusion and conductive heating. Depending on clinical objectives and available technology, thermal therapies can be subdivided into three broad categories: local, locoregional, or whole body heating. Clinically used local heating techniques include interstitial hyperthermia and ablation, high intensity focused ultrasound (HIFU), scanned focused ultrasound (SFUS), electroporation, nanoparticle heating, intraluminal heating and superficial heating. Locoregional heating techniques include phased array systems, capacitive systems and isolated perfusion. Whole body techniques focus on prevention of heat loss supplemented with energy deposition in the body, e.g., by infrared radiation. This review presents an overview of clinical hyperthermia and ablation devices used for local, locoregional, and whole body therapy. Proven and experimental clinical applications of thermal ablation and hyperthermia are listed. Methods for temperature measurement and the role of treatment planning to control treatments are discussed briefly, as well as future perspectives for heating technology for the treatment of tumors.


Assuntos
Hipertermia Induzida , Neoplasias , Calefação , Temperatura Alta , Humanos , Neoplasias/terapia , Tecnologia
10.
Int J Hyperthermia ; 37(1): 486-505, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32423258

RESUMO

Introduction: Irreversible electroporation (IRE) is a relatively new ablation method for the treatment of unresectable cancers. Although the main mechanism of IRE is electric permeabilization of cell membranes, the question is to what extent thermal effects of IRE contribute to tissue ablation.Aim: This systematic review reviews the mathematical models used to numerically simulate the heat-generating effects of IRE, and uses the obtained data to assess the degree of mild-hyperthermic (temperatures between 40 °C and 50 °C) and thermally ablative (TA) effects (temperatures exceeding 50 °C) caused by IRE within the IRE-treated region (IRE-TR).Methods: A systematic search was performed in medical and technical databases for original studies reporting on numerical simulations of IRE. Data on used equations, study design, tissue models, maximum temperature increase, and surface areas of IRE-TR, mild-hyperthermic, and ablative temperatures were extracted.Results: Several identified models, including Laplace equation for calculation of electric field distribution, Pennes Bioheat Equation for heat transfer, and Arrhenius model for thermal damage, were applied on various electrode and tissue models. Median duration of combined mild-hyperthermic and TA effects is 20% of the treatment time. Based on the included studies, mild-hyperthermic temperatures occurred in 30% and temperatures ≥50 °C in 5% of the IRE-TR.Conclusions: Simulation results in this review show that significant mild-hyperthermic effects occur in a large part of the IRE-TR, and direct thermal ablation in comparatively small regions. Future studies should aim to optimize clinical IRE protocols, maintaining a maximum irreversible permeabilized region with minimal TA effects.


Assuntos
Eletroporação/métodos , Modelos Teóricos
11.
Sensors (Basel) ; 20(21)2020 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-33142821

RESUMO

Electric permeabilization of cell membranes is the main mechanism of irreversible electroporation (IRE), an ablation technique for treatment of unresectable cancers, but the pulses also induce a significant temperature increase in the treated volume. To investigate the therapeutically thermal contribution, a preclinical setup is required to apply IRE at desired temperatures while maintaining stable temperatures. This study's aim was to develop and test an electroporation device capable of maintaining a pre-specified stable and spatially homogeneous temperatures and electric field in a tumor cell suspension for several clinical-IRE-settings. A hydraulically controllable heat exchange electroporation device (HyCHEED) was developed and validated at 37 °C and 46 °C. Through plate electrodes, HyCHEED achieved both a homogeneous electric field and homogenous-stable temperatures; IRE heat was removed through hydraulic cooling. IRE was applied to 300 µL of pancreatic carcinoma cell suspension (Mia PaCa-2), after which cell viability and specific conductivity were determined. HyCHEED maintained stable temperatures within ±1.5 °C with respect to the target temperature for multiple IRE-settings at the selected temperature levels. An increase of cell death and specific conductivity, including post-treatment, was found to depend on electric-field strength and temperature. HyCHEED is capable of maintaining stable temperatures during IRE-experiments. This provides an excellent basis to assess the contribution of thermal effects to IRE and other bio-electromagnetic techniques.

12.
Int J Hyperthermia ; 36(sup1): 47-63, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31795835

RESUMO

Purpose: Enhancing immune responses in triple negative breast cancers (TNBCs) remains a challenge. Our study aimed to determine whether magnetic iron oxide nanoparticle (MION) hyperthermia (HT) can enhance abscopal effects with radiotherapy (RT) and immune checkpoint inhibitors (IT) in a metastatic TNBC model.Methods: One week after implanting 4T1-luc cells into the mammary glands of BALB/c mice, tumors were treated with RT (3 × 8 Gy)±local HT, mild (HTM, 43 °C/20 min) or partially ablative (HTAbl, 45 °C/5 min plus 43 °C/15 min),±IT with anti-PD-1 and anti-CTLA-4 antibodies (both 4 × 10 mg/kg, i.p.). Tumor growth was measured daily. Two weeks after treatment, lungs and livers were harvested for histopathology evaluation of metastases.Results: Compared to untreated controls, all treatment groups demonstrated a decreased tumor volume; however, when compared against surgical resection, only RT + HTM+IT, RT + HTAbl+IT and RT + HTAbl had similar or smaller tumors. These cohorts showed more infiltration of CD3+ T-lymphocytes into the primary tumor. Tumor growth effects were partially reversed with T-cell depletion. Combinations that proved most effective for primary tumors generated modest reductions in numbers of lung metastases. Conversely, numbers of lung metastases showed potential to increase following HT + IT treatment, particularly when compared to RT. Compared to untreated controls, there was no improvement in survival with any treatment.Conclusions: Single-fraction MION HT added to RT + IT improved local tumor control and recruitment of CD3+ T-lymphocytes, with only a modest effect to reduce lung metastases and no improvement in overall survival. HT + IT showed potential to increase metastatic dissemination to lungs.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/radioterapia , Animais , Anticorpos Monoclonais/farmacologia , Terapia Combinada , Modelos Animais de Doenças , Feminino , Humanos , Nanopartículas de Magnetita , Camundongos , Metástase Neoplásica , Transfecção
13.
Int J Hyperthermia ; 34(1): 39-48, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28540821

RESUMO

Poly(ADP-ribose)polymerase1 (PARP1) is an important enzyme in regulating DNA replication. Inhibition of PARP1 can lead to collapsed DNA forks which subsequently causes genomic instability, making DNA more susceptible in developing fatal DNA double strand breaks. PARP1-induced DNA damage is generally repaired by homologous recombination (HR), in which BRCA2 proteins are essential. Therefore, BRCA2-deficient tumour cells are susceptible to treatment with PARP1-inhibitors (PARP1-i). Recently, BRCA2 was shown to be down-regulated by hyperthermia (HT) temporarily, and this consequently inactivated HR for several hours. In this study, we investigated whether HT exclusively interferes with HR by analysing thermal radiosensitisation of BRCA2-proficient and deficient cells. After elucidating the equitoxicity of PARP1-i on BRCA2-proficient and deficient cells, we studied the cell survival, apoptosis, DNA damage (γ-H2AX foci and comet assay) and cell cycle distribution after different treatments. PARP1-i sensitivity strongly depends on the BRCA2 status. BRCA2-proficient and deficient cells are radiosensitised by HT, indicating that HT does not exclusively act by inhibition of HR. In all cell lines, the addition of HT to radiotherapy and PARP1-i resulted in the lowest cell survival, the highest levels of DNA damage and apoptotic levels compared to duo-modality treatments. Concluding, HT not only inhibits HR, but also has the capability of radiosensitising BRCA2-deficient cells. Thus, in case of BRCA2-mutation carriers, combining HT with PARP1-i may boost the treatment efficacy. This combination therapy would be effective for all patients with PARP1-i regardless of their BRCA status.


Assuntos
Proteína BRCA2/deficiência , Inibidores Enzimáticos/farmacologia , Hipertermia Induzida/métodos , Neoplasias Mamárias Experimentais/terapia , Animais , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Apoptose/efeitos da radiação , Proteína BRCA2/metabolismo , Linhagem Celular Tumoral , Terapia Combinada , Quebras de DNA de Cadeia Dupla , Reparo do DNA/efeitos dos fármacos , Feminino , Histonas/genética , Histonas/metabolismo , Glândulas Mamárias Animais/metabolismo , Glândulas Mamárias Animais/patologia , Glândulas Mamárias Animais/efeitos da radiação , Neoplasias Mamárias Experimentais/metabolismo , Neoplasias Mamárias Experimentais/patologia , Neoplasias Mamárias Experimentais/radioterapia , Camundongos , Poli(ADP-Ribose) Polimerase-1/antagonistas & inibidores , Poli(ADP-Ribose) Polimerase-1/metabolismo , Tolerância a Radiação/efeitos dos fármacos
14.
Int J Hyperthermia ; 34(7): 969-979, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29168401

RESUMO

OBJECTIVE: In pancreatic cancer, which is therapy resistant due to its hypoxic microenvironment, hyperthermia may enhance the effect of radio(chemo)therapy. The aim of this systematic review is to investigate the validity of the hypothesis that hyperthermia added to radiotherapy and/or chemotherapy improves treatment outcome for pancreatic cancer patients. METHODS AND MATERIALS: We searched MEDLINE and Embase, supplemented by handsearching, for clinical studies involving hyperthermia in pancreatic cancer patients. The quality of studies was evaluated using the Oxford Centre for Evidence-Based Medicine levels of evidence. Primary outcome was treatment efficacy; we calculated overall response rate and the weighted estimate of the population median overall survival (mp) and compared these between hyperthermia and control cohorts. RESULTS: Overall, 14 studies were included, with 395 patients with locally advanced and/or metastatic pancreatic cancer of whom 248 received hyperthermia. Patients were treated with regional (n = 189), intraoperative (n = 39) or whole-body hyperthermia (n = 20), combined with chemotherapy, radiotherapy or both. Quality of the studies was low, with level of evidence 3 (five studies) and 4. The six studies including a control group showed a longer mp in the hyperthermia groups than in the control groups (11.7 vs. 5.6 months). Overall response rate, reported in three studies with a control group, was also better for the hyperthermia groups (43.9% vs. 35.3%). CONCLUSIONS: Hyperthermia, when added to chemotherapy and/or radiotherapy, may positively affect treatment outcome for patients with pancreatic cancer. However, the quality of the reviewed studies was limited and future randomised controlled trials are needed to establish efficacy.


Assuntos
Hipertermia Induzida/métodos , Neoplasias Pancreáticas/terapia , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Neoplasias Pancreáticas/patologia , Prognóstico
15.
Int J Mol Sci ; 19(8)2018 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-30115874

RESUMO

Hyperthermia (HT) and molecular targeting agents can be used to enhance the effect of radiotherapy (RT). The purpose of this paper is to evaluate radiation sensitization by HT and different molecular targeting agents (Poly [ADP-ribose] polymerase 1 inhibitor, PARP1-i; DNA-dependent protein kinase catalytic subunit inhibitor, DNA-PKcs-i and Heat Shock Protein 90 inhibitor, HSP90-i) in cervical cancer cell lines. Survival curves of SiHa and HeLa cells, concerning the combined effects of radiation with hyperthermia and PARP1-i, DNA-PKcs-i or HSP90-i, were analyzed using the linear-quadratic model: S(D)/S(0) = exp - (αD + ßD²). The values of the linear-quadratic (LQ) parameters α and ß, determine the effectiveness at low and high doses, respectively. The effects of these sensitizing agents on the LQ parameters are compared to evaluate dose-dependent differences in radio enhancement. Combination of radiation with hyperthermia, PARP1-i and DNA-PKcs-i significantly increased the value of the linear parameter α. Both α and ß were significantly increased for HSP90-i combined with hyperthermia in HeLa cells, though not in SiHa cells. The Homologous Recombination pathway is inhibited by hyperthermia. When hyperthermia is combined with DNA-PKcs-i and PARP1-i, the Non-Homologous End Joining or Alternative Non-Homologous End Joining pathway is also inhibited, leading to a more potent radio enhancement. The observed increments of the α value imply that significant radio enhancement is obtained at clinically-used radiotherapy doses. Furthermore, the sensitizing effects of hyperthermia can be even further enhanced when combined with other molecular targeting agents.


Assuntos
Hipertermia Induzida , Terapia de Alvo Molecular , Radiação Ionizante , Neoplasias do Colo do Útero/terapia , Sobrevivência Celular/efeitos da radiação , Quebras de DNA de Cadeia Dupla/efeitos da radiação , Reparo do DNA/efeitos da radiação , Feminino , Células HeLa , Humanos , Resultado do Tratamento
16.
Strahlenther Onkol ; 193(5): 351-366, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28251250

RESUMO

Quality assurance (QA) guidelines are essential to provide uniform execution of clinical trials with uniform quality hyperthermia treatments. This document outlines the requirements for appropriate QA of all current superficial heating equipment including electromagnetic (radiative and capacitive), ultrasound, and infrared heating techniques. Detailed instructions are provided how to characterize and document the performance of these hyperthermia applicators in order to apply reproducible hyperthermia treatments of uniform high quality. Earlier documents used specific absorption rate (SAR) to define and characterize applicator performance. In these QA guidelines, temperature rise is the leading parameter for characterization of applicator performance. The intention of this approach is that characterization can be achieved with affordable equipment and easy-to-implement procedures. These characteristics are essential to establish for each individual applicator the specific maximum size and depth of tumors that can be heated adequately. The guidelines in this document are supplemented with a second set of guidelines focusing on the clinical application. Both sets of guidelines were developed by the European Society for Hyperthermic Oncology (ESHO) Technical Committee with participation of senior Society of Thermal Medicine (STM) members and members of the Atzelsberg Circle.


Assuntos
Ensaios Clínicos como Assunto/instrumentação , Ensaios Clínicos como Assunto/normas , Hipertermia Induzida/instrumentação , Hipertermia Induzida/normas , Guias de Prática Clínica como Assunto , Garantia da Qualidade dos Cuidados de Saúde/normas , Desenho de Equipamento , Análise de Falha de Equipamento/métodos , Análise de Falha de Equipamento/normas , Alemanha , Raios Infravermelhos , Internacionalidade , Micro-Ondas
17.
Int J Hyperthermia ; 32(5): 558-68, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-26982889

RESUMO

Introduction The reliability of hyperthermia treatment planning (HTP) is strongly dependent on the accuracy of the electric properties of each tissue. The values currently used are mostly based on ex vivo measurements. In this study, in vivo conductivity of human muscle, bladder content and cervical tumours, acquired with magnetic resonance-based electric properties tomography (MR-EPT), are exploited to investigate the effect on HTP for cervical cancer patients. Methods Temperature-based optimisation of five different patients was performed using literature-based conductivity values yielding certain antenna settings, which are then used to compute the temperature distribution of the patient models with EPT-based conductivity values. Furthermore, the effects of altered bladder and muscle conductivity were studied separately. Finally, the temperature-based optimisation was performed with patient models based on EPT conductivity values. Results The tumour temperatures for all EPT-based dielectric patient models were lower compared to the optimal tumour temperatures based on literature values. The largest deviation was observed for patient 1 with ΔT90 = -1.37 °C. A negative impact was also observed when the treatment was optimised based on the EPT values. For four patients ΔT90 was less than 0.6 °C; for one patient it was 1.5 °C. Conclusions Electric conductivity values acquired by EPT are higher than commonly used from literature. This difference has a substantial impact on cervical tumour temperatures achieved during hyperthermia. A higher conductivity in the bladder and in the muscle tissue surrounding the tumour leads to higher power dissipation in the bladder and muscle, and therefore to lower tumour temperatures.


Assuntos
Condutividade Elétrica , Hipertermia Induzida , Neoplasias do Colo do Útero/terapia , Feminino , Humanos , Músculos/diagnóstico por imagem , Temperatura , Tomografia/métodos , Bexiga Urinária/diagnóstico por imagem , Neoplasias do Colo do Útero/diagnóstico por imagem
18.
Int J Hyperthermia ; 32(4): 417-33, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27132465

RESUMO

The urinary bladder is a fluid-filled organ. This makes, on the one hand, the internal surface of the bladder wall relatively easy to heat and ensures in most cases a relatively homogeneous temperature distribution; on the other hand the variable volume, organ motion, and moving fluid cause artefacts for most non-invasive thermometry methods, and require additional efforts in planning accurate thermal treatment of bladder cancer. We give an overview of the thermometry methods currently used and investigated for hyperthermia treatments of bladder cancer, and discuss their advantages and disadvantages within the context of the specific disease (muscle-invasive or non-muscle-invasive bladder cancer) and the heating technique used. The role of treatment simulation to determine the thermal dose delivered is also discussed. Generally speaking, invasive measurement methods are more accurate than non-invasive methods, but provide more limited spatial information; therefore, a combination of both is desirable, preferably supplemented by simulations. Current efforts at research and clinical centres continue to improve non-invasive thermometry methods and the reliability of treatment planning and control software. Due to the challenges in measuring temperature across the non-stationary bladder wall and surrounding tissues, more research is needed to increase our knowledge about the penetration depth and typical heating pattern of the various hyperthermia devices, in order to further improve treatments. The ability to better determine the delivered thermal dose will enable clinicians to investigate the optimal treatment parameters, and consequentially, to give better controlled, thus even more reliable and effective, thermal treatments.


Assuntos
Hipertermia Induzida , Neoplasias da Bexiga Urinária/terapia , Animais , Humanos , Temperatura , Termometria
19.
J Urol ; 194(5): 1202-8, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26143111

RESUMO

PURPOSE: Despite intravesical therapy with immunotherapy or chemotherapy intermediate and high risk nonmuscle invasive bladder cancer is associated with a high risk of recurrence and progression to muscle invasive bladder carcinoma. While intravesical hyperthermia combined with mitomycin C has proved effective to treat nonmuscle invasive bladder cancer, there is less experience with invasive regional 70 MHz hyperthermia and mitomycin C. Therefore, we examined the safety and feasibility of this treatment combination for intermediate and high risk nonmuscle invasive bladder cancer. MATERIALS AND METHODS: Between 2009 and 2011, 20 patients with intermediate and high risk nonmuscle invasive bladder cancer were treated with intravesical mitomycin C (40 mg) combined with regional hyperthermia. Treatment consisted of 6 weekly sessions followed by a maintenance period of 1 year with 1 hyperthermia-mitomycin C session every 3 months. Regional hyperthermia was administered using a 70 MHz phased array system with 4 antennas. Toxicity was scored using CTC (Common Toxicity Criteria) 3.0. RESULTS: The records of 18 of 20 patients could be analyzed. Median followup was 46 months. Of the 18 patients 15 (83%) completed the induction period of 6 treatments. Four patients (22%) discontinued treatment because of physical complaints without exceeding grade 2 toxicity. Toxicity scored according to CTC 3.0 was limited to grade 1 in 43% of cases and grade 2 in 14%. Mean T90 and T50 bladder temperatures were 40.6C and 41.6C, respectively. The 24-month recurrence-free survival rate was 78%. CONCLUSIONS: Treatment with regional hyperthermia combined with mitomycin C in patients with intermediate and high risk nonmuscle invasive bladder cancer is feasible with low toxicity and excellent bladder temperatures.


Assuntos
Hipertermia Induzida/métodos , Mitomicina/administração & dosagem , Neoplasias da Bexiga Urinária/terapia , Administração Intravesical , Adulto , Idoso , Idoso de 80 Anos ou mais , Antibióticos Antineoplásicos/administração & dosagem , Terapia Combinada , Progressão da Doença , Relação Dose-Resposta a Droga , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Invasividade Neoplásica , Projetos Piloto , Estudos Retrospectivos , Resultado do Tratamento , Neoplasias da Bexiga Urinária/patologia
20.
Int J Hyperthermia ; 31(4): 443-52, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25875224

RESUMO

PURPOSE: This paper describes the development of a new type of electromagnetic hyperthermia applicator delivering dose control within large application fields and increased effectiveness by providing simultaneous action of radiation and heating (SRH) in malignant tumours, and development of a dosimetric feedback method to support SRH. MATERIALS AND METHODS: Single and phased arrays of flexible applicators have been developed to allow simultaneous hyperthermia and external beam therapy. A frequency of 434 MHz is used to heat near-surface and moderately deep-seated tumours and 70 MHz for deep-seated tumours. Phase and amplitude control allows focusing of electromagnetic energy (EM) to deep-seated tumours. The specific absorption rate (SAR) dose distribution can be modified to achieve uniform heating of tumours with complex shapes and heterogeneous tissue properties. A lithium fluoride thermoluminescent dosimeter (TLD) in a flexible film cassette has been developed for real-time dose measurement. RESULTS: Four types of 434 MHz applicators were manufactured with 3, 4, 9 or 12 independent applicators. Two types of 70 MHz applicators were made with 4 or 6 independent applicators. Phantom tests demonstrated the ability to control the SAR pattern by phase and amplitude control. Placement of the dosimeter between bolus and phantom increased the phantom surface temperature up to 3 °C and showed that the ratio of absorbed energy in TLD to dose in water approaches (0.83 ± 3%) for photon energies >60 keV. CONCLUSIONS: Simultaneous and controlled radiation and local hyperthermia is technically feasible in a preclinical setting, a clinical feasibility test is the next step.


Assuntos
Hipertermia Induzida/métodos , Neoplasias/terapia , Terapia com Prótons/métodos , Terapia Combinada , Fenômenos Eletromagnéticos , Neoplasias/radioterapia , Imagens de Fantasmas , Radiometria
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA