Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 131
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Biol Evol ; 40(5)2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-37146172

RESUMO

Convergent adaptation to the same environment by multiple lineages frequently involves rapid evolutionary change at the same genes, implicating these genes as important for environmental adaptation. Such adaptive molecular changes may yield either change or loss of protein function; loss of function can eliminate newly deleterious proteins or reduce energy necessary for protein production. We previously found a striking case of recurrent pseudogenization of the Paraoxonase 1 (Pon1) gene among aquatic mammal lineages-Pon1 became a pseudogene with genetic lesions, such as stop codons and frameshifts, at least four times independently in aquatic and semiaquatic mammals. Here, we assess the landscape and pace of pseudogenization by studying Pon1 sequences, expression levels, and enzymatic activity across four aquatic and semiaquatic mammal lineages: pinnipeds, cetaceans, otters, and beavers. We observe in beavers and pinnipeds an unexpected reduction in expression of Pon3, a paralog with similar expression patterns but different substrate preferences. Ultimately, in all lineages with aquatic/semiaquatic members, we find that preceding any coding-level pseudogenization events in Pon1, there is a drastic decrease in expression, followed by relaxed selection, thus allowing accumulation of disrupting mutations. The recurrent loss of Pon1 function in aquatic/semiaquatic lineages is consistent with a benefit to Pon1 functional loss in aquatic environments. Accordingly, we examine diving and dietary traits across pinniped species as potential driving forces of Pon1 functional loss. We find that loss is best associated with diving activity and likely results from changes in selective pressures associated with hypoxia and hypoxia-induced inflammation.


Assuntos
Arildialquilfosfatase , Caniformia , Animais , Arildialquilfosfatase/genética , Mamíferos/genética , Cetáceos/genética , Roedores , Hipóxia
2.
Ecol Lett ; 26(5): 706-716, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36888564

RESUMO

Although anthropogenic change is often gradual, the impacts on animal populations may be precipitous if physiological processes create tipping points between energy gain, reproduction or survival. We use 25 years of behavioural, diet and demographic data from elephant seals to characterise their relationships with lifetime fitness. Survival and reproduction increased with mass gain during long foraging trips preceding the pupping seasons, and there was a threshold where individuals that gained an additional 4.8% of their body mass (26 kg, from 206 to 232 kg) increased lifetime reproductive success three-fold (from 1.8 to 4.9 pups). This was due to a two-fold increase in pupping probability (30% to 76%) and a 7% increase in reproductive lifespan (6.0 to 6.4 years). The sharp threshold between mass gain and reproduction may explain reproductive failure observed in many species and demonstrates how small, gradual reductions in prey from anthropogenic disturbance could have profound implications for animal populations.


Assuntos
Mamíferos , Reprodução , Animais , Estações do Ano
3.
Am J Physiol Regul Integr Comp Physiol ; 325(1): R1-R12, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37125769

RESUMO

Intrinsic stressors associated with life-history stages may alter the responsiveness of the hypothalamic-pituitary-adrenal axis and responses to extrinsic stressors. We administered adrenocorticotropic hormone (ACTH) to 24 free-ranging adult female northern elephant seals (NESs) at two life-history stages: early and late in their molting period and measured a suite of endocrine, immune, and metabolite responses. Our objective was to evaluate the impact of extended, high-energy fasting on adrenal responsiveness. Animals were blood sampled every 30 min for 120 min post-ACTH injection, then blood was sampled 24 h later. In response to ACTH injection, cortisol levels increased 8- to 10-fold and remained highly elevated compared with baseline at 24 h. Aldosterone levels increased 6- to 9-fold before returning to baseline at 24 h. The magnitude of cortisol and aldosterone release were strongly associated, and both were greater after extended fasting. We observed an inverse relationship between fat mass and the magnitude of cortisol and aldosterone responses, suggesting that body reserves influenced adrenal responsiveness. Sustained elevation in cortisol was associated with alterations in thyroid hormones; both tT3 and tT4 concentrations were suppressed at 24 h, while rT3 increased. Immune cytokine IL-1ß was also suppressed after 24 h of cortisol elevation, and numerous acute and sustained impacts on substrate metabolism were evident. Our data suggest that female NESs are more sensitive to stress after the molt fast and that acute stress events can have important impacts on metabolism and immune function. These findings highlight the importance of considering life-history context when assessing the impacts of anthropogenic stressors on wildlife.


Assuntos
Hormônio Adrenocorticotrópico , Focas Verdadeiras , Animais , Feminino , Hidrocortisona , Glândula Tireoide/metabolismo , Sistema Hipotálamo-Hipofisário/metabolismo , Aldosterona/metabolismo , Muda , Sistema Hipófise-Suprarrenal/metabolismo , Focas Verdadeiras/metabolismo , Imunidade
4.
J Exp Biol ; 226(24)2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-38009222

RESUMO

Animals may limit the cost of stress responses during key life history stages such as breeding and molting by reducing tissue sensitivity to energy-mobilizing stress hormones (e.g. cortisol). We measured expression of genes encoding glucocorticoid receptor (GR, NR3C1), GR inhibitor (FKBP5) and cortisol-inactivating enzyme (HSD11B2) in blubber and muscle of northern elephant seals before and after stress axis stimulation by adrenocorticotropic hormone (ACTH) early and late in a fasting period associated with molting. ACTH elevated cortisol levels for >24 h and increased FKBP5 and HSD11B2 expression while downregulating NR3C1 expression in blubber and muscle, suggesting robust intracellular negative feedback in peripheral tissues. This feedback was maintained over prolonged fasting, despite differences in baseline cortisol and gene expression levels between early and late molt, suggesting that fasting-adapted animals use multiple tissue-specific, intracellular negative feedback mechanisms to modulate downstream impacts of acute stress responses during key life history stages.


Assuntos
Hidrocortisona , Focas Verdadeiras , Animais , Hidrocortisona/metabolismo , Retroalimentação , Focas Verdadeiras/fisiologia , Jejum , Músculos , Hormônio Adrenocorticotrópico
5.
Environ Sci Technol ; 57(14): 5678-5692, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-36996077

RESUMO

Mercury bioaccumulation from deep-ocean prey and the extreme life history strategies of adult female northern elephant seals (Mirounga angustirostris) provide a unique system to assess the interactive effects of mercury and stress on animal health by quantifying blood biomarkers in relation to mercury (skeletal muscle and blood mercury) and cortisol concentrations. The thyroid hormone thyroxine (tT4) and the antibody immunoglobulin E (IgE) were associated with mercury and cortisol concentrations interactively, where the magnitude and direction of the association of each biomarker with mercury or cortisol changed depending on the concentration of the other factor. For example, when cortisol concentrations were lowest, tT4 was positively related to muscle mercury, whereas tT4 had a negative relationship with muscle mercury in seals that had the highest cortisol concentrations. Additionally, we observed that two thyroid hormones, triiodothyronine (tT3) and reverse triiodothyronine (rT3), were negatively (tT3) and positively (rT3) associated with mercury concentrations and cortisol in an additive manner. As an example, tT3 concentrations in late breeding seals at the median cortisol concentration decreased by 14% across the range of observed muscle mercury concentrations. We also observed that immunoglobulin M (IgM), the pro-inflammatory cytokine IL-6 (IL-6), and a reproductive hormone, estradiol, were negatively related to muscle mercury concentrations but were not related to cortisol. Specifically, estradiol concentrations in late molting seals decreased by 50% across the range of muscle mercury concentrations. These results indicate important physiological effects of mercury on free-ranging apex marine predators and interactions between mercury bioaccumulation and extrinsic stressors. Deleterious effects on animals' abilities to maintain homeostasis (thyroid hormones), fight off pathogens and disease (innate and adaptive immune system), and successfully reproduce (endocrine system) can have significant individual- and population-level consequences.


Assuntos
Mercúrio , Focas Verdadeiras , Animais , Feminino , Hidrocortisona , Interleucina-6 , Bioacumulação , Tri-Iodotironina , Hormônios Tireóideos , Tiroxina , Focas Verdadeiras/fisiologia , Sistema Endócrino , Biomarcadores
6.
J Exp Biol ; 225(4)2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35188212

RESUMO

Unlike many animals that reduce activity during fasting, northern elephant seals (NES) undergo prolonged fasting during energy-intensive life-history stages such as reproduction and molting, fueling fasting energy needs by mobilizing fat stores accrued during foraging. NES display several unique metabolic features such as high fasting metabolic rates, elevated blood lipid and high-density lipoprotein (HDL) cholesterol levels, efficient protein sparing and resistance to oxidative stress during fasting. However, the cellular mechanisms that regulate these adaptations are still not fully understood. To examine how metabolic coordination is achieved during prolonged fasting, we profiled changes in blubber, skeletal muscle and plasma proteomes of adult female NES over a 5 week fast associated with molting. We found that while blubber and muscle proteomes were remarkably stable over fasting, over 50 proteins changed in abundance in plasma, including those associated with lipid storage, mobilization, oxidation and transport. Apolipoproteins dominated the blubber, plasma and muscle proteome responses to fasting. APOA4, APOE and APOC3, which are associated with lipogenesis and triglyceride accumulation, decreased, while APOA1, APOA2 and APOM, which are associated with lipid mobilization and HDL function, increased over fasting. Our findings suggest that changes in apolipoprotein composition may underlie the maintenance of high HDL levels and, together with adipokines and hepatokines that facilitate lipid catabolism, may mediate the metabolic transitions between feeding and fasting in NES. Many of these proteins have not been previously studied in this species and provide intriguing hypotheses about metabolic regulation during prolonged fasting in mammals.


Assuntos
Focas Verdadeiras , Tecido Adiposo/metabolismo , Animais , Jejum/fisiologia , Feminino , Muda , Proteoma/metabolismo , Focas Verdadeiras/fisiologia
7.
Proc Biol Sci ; 288(1960): 20211258, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-34641731

RESUMO

All organisms face resource limitations that will ultimately restrict population growth, but the controlling mechanisms vary across ecosystems, taxa, and reproductive strategies. Using four decades of data, we examine how variation in the environment and population density affect reproductive outcomes in a capital-breeding carnivore, the northern elephant seal (Mirounga angustirostris). This species provides a unique opportunity to examine the relative importance of resource acquisition and density-dependence on breeding success. Capital breeders accrue resources over large temporal and spatial scales for use during an abbreviated reproductive period. This strategy may have evolved, in part, to confer resilience to short-term environmental variability. We observed density-dependent effects on weaning mass, and maternal age (experience) was more important than oceanographic conditions or maternal mass in determining offspring weaning mass. Together these findings show that the mechanisms controlling reproductive output are conserved across terrestrial and marine systems and vary with population dynamics, an important consideration when assessing the effect of extrinsic changes, such as climate change, on a population.


Assuntos
Ecossistema , Focas Verdadeiras , Animais , Mudança Climática , Feminino , Gravidez , Reprodução , Desmame
8.
Am J Physiol Regul Integr Comp Physiol ; 320(4): R393-R403, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33407018

RESUMO

The postweaning fast of northern elephant seal pups is characterized by a lipid-dependent metabolism and associated with a decrease in plasma glucagon-like peptide-1 (GLP-1), insulin, and glucose and increased gluconeogenesis (GNG) and ketogenesis. We have also demonstrated that exogenous GLP-1 infusion increased plasma insulin despite simultaneous increases in cortisol and glucagon, which collectively present contradictory regulatory stimuli of GNG, ketogenesis, and glycolysis. To assess the effects of GLP-1 on metabolism using primary carbon metabolite profiles in late-fasted seal pups, we dose-dependently infused late-fasted seals with low (LDG; 10 pM/kg; n = 3) or high (HDG; 100 pM/kg; n = 4) GLP-1 immediately following a glucose bolus (0.5 g/kg), using glucose without GLP-1 as control (n = 5). Infusions were performed in similarly aged animals 6-8 wk into their postweaning fast. The plasma metabolome was measured from samples collected at five time points just prior to and during the infusions, and network maps constructed to robustly evaluate the effects of GLP-1 on primary carbon metabolism. HDG increased key tricarboxylic acid (TCA) cycle metabolites, and decreased phosphoenolpyruvate and acetoacetate (P < 0.05) suggesting that elevated levels of GLP-1 promote glycolysis and suppress GNG and ketogenesis, which collectively increase glucose clearance. These GLP-1-mediated effects on cellular metabolism help to explain why plasma GLP-1 concentrations decrease naturally in fasting pups as an evolved mechanism to help conserve glucose during the late-fasting period.


Assuntos
Glicemia/efeitos dos fármacos , Ciclo do Ácido Cítrico/efeitos dos fármacos , Peptídeo 1 Semelhante ao Glucagon/administração & dosagem , Gluconeogênese/efeitos dos fármacos , Corpos Cetônicos/metabolismo , Focas Verdadeiras/metabolismo , Animais , Biomarcadores/sangue , Glicemia/metabolismo , Relação Dose-Resposta a Droga , Jejum/sangue , Infusões Intravenosas , Masculino , Metaboloma , Metabolômica , Focas Verdadeiras/sangue , Fatores de Tempo , Desmame
9.
Am J Physiol Regul Integr Comp Physiol ; 321(3): R413-R428, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34260302

RESUMO

Elephant seals experience natural periods of prolonged food deprivation while breeding, molting, and undergoing postnatal development. Prolonged food deprivation in elephant seals increases circulating glucocorticoids without inducing muscle atrophy, but the cellular mechanisms that allow elephant seals to cope with such conditions remain elusive. We generated a cellular model and conducted transcriptomic, metabolic, and morphological analyses to study how seal cells adapt to sustained glucocorticoid exposure. Seal muscle progenitor cells differentiate into contractile myotubes with a distinctive morphology, gene expression profile, and metabolic phenotype. Exposure to dexamethasone at three ascending concentrations for 48 h modulated the expression of six clusters of genes related to structural constituents of muscle and pathways associated with energy metabolism and cell survival. Knockdown of the glucocorticoid receptor (GR) and downstream expression analyses corroborated that GR mediates the observed effects. Dexamethasone also decreased cellular respiration, shifted the metabolic phenotype toward glycolysis, and induced mitochondrial fission and dissociation of mitochondria-endoplasmic reticulum (ER) interactions without decreasing cell viability. Knockdown of DNA damage-inducible transcript 4 (DDIT4), a GR target involved in the dissociation of mitochondria-ER membranes, recovered respiration and modulated antioxidant gene expression in myotubes treated with dexamethasone. These results show that adaptation to sustained glucocorticoid exposure in elephant seal myotubes involves a metabolic shift toward glycolysis, which is supported by alterations in mitochondrial morphology and a reduction in mitochondria-ER interactions, resulting in decreased respiration without compromising cell survival.


Assuntos
Metabolismo Energético/fisiologia , Glucocorticoides/metabolismo , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Adaptação Fisiológica , Animais , Antioxidantes/metabolismo , Jejum/metabolismo , Privação de Alimentos/fisiologia , Fenótipo , Receptores de Glucocorticoides/genética , Focas Verdadeiras/metabolismo , Transcriptoma/fisiologia
10.
Am J Physiol Regul Integr Comp Physiol ; 321(4): R537-R546, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34346724

RESUMO

The prolonged, postweaning fast of northern elephant seal (Mirounga angustirostris) pups is characterized by a reliance on lipid metabolism and reversible, fasting-induced insulin resistance, providing a unique model to examine the effects of insulin on lipid metabolism. We have previously shown that acute insulin infusion induced a shift in fatty acid metabolism dependent on fasting duration. This study complements the previous study by examining the effects of fasting duration and insulin infusion on circulating levels of oxylipins, bioactive metabolites derived from the oxygenation of polyunsaturated fatty acids. Northern elephant seal pups were studied at two postweaning periods (n = 5/period): early fasting (1-2 wk postweaning; 127 ± 1 kg) and late fasting (6-7 wk postweaning; 93 ± 4 kg). Different cohorts of pups were weighed, sedated, and infused with 65 mU/kg of insulin. Plasma was collected prior to infusion (T0) and at 10, 30, 60, and 120 min postinfusion. A profile of ∼80 oxylipins was analyzed by UPLC-ESI-MS/MS. Nine oxylipins changed between early and late fasting and eight were altered in response to insulin infusion. Fasting decreased prostaglandin F2α (PGF2α) and increased 14,15-dihydroxyicosatrienoic acid (14,15-DiHETrE), 20-hydroxyeicosatetraenoic acid (20-HETE), and 4-hydroxy-docosahexaenoic acid (4-HDoHE) (P < 0.03) in T0 samples, whereas insulin infusion resulted in an inverse change in area-under-the-curve (AUC) levels in these same metabolites (P < 0.05). In addition, 12-12-hydroperoxyeicosatetraenoic acid (HpETE) and 12-HETE decreased with fasting and insulin infusion, respectively (P < 0.04). The oxylipins altered during fasting and in response to insulin infusion may contribute to the manifestation of insulin resistance and participate in the metabolic regulation of associated cellular processes.


Assuntos
Jejum/sangue , Hipoglicemiantes/administração & dosagem , Resistência à Insulina , Insulina/administração & dosagem , Metabolismo dos Lipídeos/efeitos dos fármacos , Oxilipinas/sangue , Focas Verdadeiras/sangue , Animais , Biomarcadores/sangue , Infusões Parenterais
11.
J Exp Biol ; 224(18)2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34524449

RESUMO

The hypothalamic-pituitary-adrenal (HPA) axis controls the release of glucocorticoids, which regulate immune and inflammatory function by modulating cytokines, white blood cells and oxidative stress via glucocorticoid receptor (GR) signaling. Although the response to HPA activation is well characterized in many species, little is known about the impacts of HPA activation during extreme physiological conditions. Hence, we challenged 18 simultaneously fasting and developing elephant seal pups with daily intramuscular injections of adrenocorticotropin (ACTH), a GR antagonist (RU486), or a combination of the two (ACTH+RU486) for 4 days. We collected blood at baseline, 2 h and 4 days after the beginning of treatment. ACTH and ACTH+RU486 elevated serum aldosterone and cortisol at 2 h, with effects diminishing at 4 days. RU486 alone induced a compensatory increase in aldosterone, but not cortisol, at 4 days. ACTH decreased neutrophils at 2 h, while decreasing lymphocytes and increasing the neutrophil:lymphocyte ratio at 4 days. These effects were abolished by RU486. Despite alterations in white blood cells, there was no effect of ACTH or RU486 on transforming growth factor-ß or interleukin-6 levels; however, both cytokines decreased with the 4 day fasting progression. Similarly, ACTH did not impact protein oxidation, lipid peroxidation or antioxidant enzymes, but plasma isoprostanes and catalase activity decreased while glutathione peroxidase increased with fasting progression. These data demonstrate differential acute (2 h) and chronic (4 days) modulatory effects of HPA activation on white blood cells and that the chronic effect is mediated, at least in part, by GR. These results also underscore elephant seals' extraordinary resistance to oxidative stress derived from repeated HPA activation.


Assuntos
Sistema Hipófise-Suprarrenal , Focas Verdadeiras , Animais , Citocinas , Jejum , Hidrocortisona , Sistema Hipotálamo-Hipofisário , Contagem de Leucócitos , Estresse Oxidativo
12.
Oecologia ; 195(1): 25-35, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33340345

RESUMO

Between-individual variation in behavior can emerge through complex interactions between state-related mechanisms, which include internal physiological constraints or feedback derived from the external environment. State-related conditions can be especially influential during early life, when parental effort and exposure to social stress may canalize consistent differences in offspring hormonal profiles and foster specific behavioral strategies. Here, we unravel how relevant state variables, including sex, somatic condition, local population density, and maternal traits, contribute to within-cohort differences in stress, sex, and thyroid hormone axes in dependent Galapagos sea lions with the primary goal of understanding downstream effects on boldness, docility, habitat use, and activity. Pups within denser natal sites had higher levels of cortisol and thyroid T4, a prohormone and proxy for metabolic reserves, likely as an adaptive physiological response after exposure to increased numbers of conspecific interactions. Furthermore, considering maternal effects, mothers in better body condition produced pups with higher testosterone yet downregulated basal cortisol and thyroid T4. This hormonal profile was correlated with increased boldness toward novel objects and attenuated stress responsiveness during capture. Intriguingly, pups with increased thyroid T3, the biologically active form, maintained faster somatic growth and were observed to have increased activity and extensively explored surrounding habitats. Collectively, these findings provide comprehensive evidence for several links to hormone-mediated behavioral strategies, highlighted by variation in socio-environmental and maternally derived input during a foundational life stage.


Assuntos
Leões-Marinhos , Animais , Feminino , Humanos , Mães , Personalidade , Estresse Psicológico
13.
Gen Comp Endocrinol ; 308: 113760, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33781740

RESUMO

Adipose tissue is essential to endotherms for thermoregulation and energy storage as well as functioning as an endocrine organ. Adipose derived hormones, or adipokines, regulate metabolism, energy expenditure, reproduction, and immune function in model systems but are less well studied in wildlife. Female northern elephant seals (NES) achieve high adiposity during foraging and then undergo natural fasts up to five weeks long during haul-outs associated with reproduction and molting, resulting in large changes in adipose reserves. We measured circulating levels of four adipokines: leptin, resistin, adiponectin, and kisspeptin-54, in 196 serum samples from female NES at the beginning and end of their breeding and molting fasts. We examined the relationships between these adipokines and life-history stage, adiposity, mass, cortisol, and an immune cytokine involved in the innate immune response interleukin 6 (IL-6). All four adipokines varied with life-history stage. Leptin concentrations were highest at the beginning of the breeding haul-out. Resistin concentrations were higher throughout the breeding haul-out compared to the molt haul-out. Adiponectin concentrations were highest at the beginning of both haul-outs. Kisspeptin-54 concentrations were highest at the end of the breeding haul-out. Leptin, resistin, and adiponectin were associated with measures of body condition, either adiposity, mass, or both. Resistin, adiponectin, and kisspeptin-54 were associated with circulating cortisol concentrations. Resistin was strongly associated with circulating IL-6, a multifunctional cytokine. Adiponectin was associated with glucose concentrations, suggesting a potential role in tissue-specific insulin sensitivity during life-history stages categorized by high adiposity. Increased cortisol concentrations late in lactation were associated with increased kisspeptin-54, suggesting a link to ovulation initiation in NES. This study suggests dramatic changes in circulating adipokines with life-history and body condition that may exert important regulatory roles in NES. The positive relationship between adiponectin and adiposity as well as the lack of a relationship between leptin and kisspeptin-54 differed from model systems. These differences from biomedical model systems suggest the potential for modifications of expression and function of adipose-derived hormones in species that undergo natural changes in adiposity as part of their life-history.


Assuntos
Adipocinas , Focas Verdadeiras , Adipocinas/metabolismo , Adiponectina/metabolismo , Adiposidade , Animais , Jejum/metabolismo , Feminino , Kisspeptinas/metabolismo , Leptina/metabolismo , Resistina/metabolismo
14.
J Exp Biol ; 223(Pt 23)2020 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-33268565

RESUMO

Understanding the environmental and behavioral factors that influence how organisms maintain energy balance can inform us about their potential resiliency to rapid environmental changes. Flexibility in maintaining energy balance is particularly important to long-lived, central-place foraging seabirds that are constrained when locating food for offspring in a dynamic ocean environment. To understand the role of environmental interactions, behavioral flexibility and morphological constraints on energy balance, we used doubly labeled water to measure the at-sea daily energy expenditure (DEE) of two sympatrically breeding seabirds, Campbell (Thalassarche impavida) and grey-headed (Thalassarchechrysostoma) albatrosses. We found that species and sexes had similar foraging costs, but DEE varied between years for both species and sexes during early chick rearing in two consecutive seasons. For both species, greater DEE was positively associated with larger proportional mass gain, lower mean wind speeds during water take-offs, greater proportions of strong tailwinds (>12 m s-1), and younger chick age. Greater proportional mass gains were marginally more costly in male albatrosses that already have higher wing loading. DEE was higher during flights with a greater proportion of strong headwinds for grey-headed albatrosses only. Poleward winds are forecasted to intensify over the next century, which may increase DEE for grey-headed albatrosses that heavily use this region during early chick rearing. Female Campbell albatrosses may be negatively affected by forecasted slackening winds at lower latitudes due to an expected greater reliance on less energy efficient sit-and-wait foraging strategies. Behavioral plasticity associated with environmental variation may influence future population responses to climate change of both species.


Assuntos
Aves , Vento , Animais , Feminino , Masculino , Estações do Ano , Simpatria , Asas de Animais
15.
J Acoust Soc Am ; 147(3): 1681, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32237823

RESUMO

Little information exists on endocrine responses to noise exposure in marine mammals. In the present study, cortisol, aldosterone, and epinephrine levels were measured in 30 bottlenose dolphins (Tursiops truncatus) before and after exposure to simulated U.S. Navy mid-frequency sonar signals (3250-3450 Hz). Control and exposure sessions, each consisting of ten trials, were performed sequentially with each dolphin. While swimming across the experimental enclosure during exposure trials, each dolphin received a single 1-s exposure with received sound pressure levels (SPLs, dB re 1 µPa) of 115, 130, 145, 160, 175, or 185 dB. Blood samples were collected through behaviorally conditioned, voluntary participation of the dolphins approximately one week prior to, immediately following, and approximately one week after exposure were analyzed for hormones via radioimmunoassay. Aldosterone was below detection limits in all samples. Neither cortisol nor epinephrine showed a consistent relationship with received SPL, even though dolphins abandoned trained behaviors after exposure to the highest SPLs and the severity of behavioral changes scaled with SPL. It remains unclear if dolphins interpret high-level anthropogenic sound as stressful, annoying, or threatening and whether behavioral responses to sound can be equated to a physiological (endocrine) response.


Assuntos
Golfinho Nariz-de-Garrafa , Animais , Som
16.
Am J Physiol Regul Integr Comp Physiol ; 317(4): R521-R529, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31390224

RESUMO

Northern elephant seals (Mirounga angustirostris) are exceptional among fasting-adapted animals in coupling prolonged fasting with energetically costly activities, relying on oxidation of fat stores accrued during foraging to power metabolic demands of reproduction and molting. We hypothesized that high rates of energy expenditure, insulin resistance, and immune responses to colonial breeding in fasting seals are mediated by adipokines, or signaling molecules secreted by adipose tissue that are associated with obesity and inflammation in humans. We measured mRNA expression of 10 adipokine genes in blubber tissue of adult female elephant seals sampled early and late during their lactation and molting fasts and correlated gene expression with adiposity and circulating levels of corticosteroid and immune markers. Expression of adiponectin (ADIPOQ) and its receptor ADIPOR2, leptin receptor (LEPR), resistin (RETN), retinol binding protein 4 (RBP4), and visfatin/nicotinamide phosphoribosyltransferase (NAMPT) was increased, whereas that of fat mass and obesity-associated protein (FTO) was decreased in late-fasted compared with early-fasted groups. Abundance of adipokine transcripts that increased in late fasting was negatively associated with body mass and positively associated with cortisol, suggesting that they may mediate local metabolic effects of cortisol in blubber during fasting. Expression of several adipokines was correlated with the immune markers IL-6, haptoglobin, IgM, and IgE, suggesting a potential role in modulating immune responses to colonial breeding and molting. Since many of these adipokines have not been measured in other wild animals, this study provides preliminary insights into their local regulation in fat tissue and targeted assays for future studies.


Assuntos
Adipocinas/metabolismo , Regulação da Expressão Gênica/fisiologia , Obesidade/genética , Focas Verdadeiras/fisiologia , Adipocinas/genética , Animais , Jejum , Feminino , Obesidade/metabolismo
17.
Physiol Genomics ; 50(7): 495-503, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29625017

RESUMO

The physiological and cellular adaptations to extreme fasting in northern elephant seals ( Mirounga angustirostris, NES) are remarkable and may help to elucidate endocrine mechanisms that regulate lipid metabolism and energy homeostasis in mammals. Recent studies have highlighted the importance of thyroid hormones in the maintenance of a lipid-based metabolism during prolonged fasting in weaned NES pups. To identify additional molecular regulators of fasting, we used a transcriptomics approach to examine changes in global gene expression profiles before and after 6-8 wk of fasting in weaned NES pups. We produced a de novo assembly and identified 98 unique protein-coding genes that were differentially expressed between early and late fasting. Most of the downregulated genes were associated with lipid, carbohydrate, and protein metabolism. A number of downregulated genes were also associated with maintenance of the extracellular matrix, consistent with tissue remodeling during weight loss and the multifunctional nature of blubber tissue, which plays both metabolic and structural roles in marine mammals. Using this data set, we predict potential mechanisms by which NES pups sustain metabolism and regulate adipose stores throughout the fast, and provide a valuable resource for additional studies of extreme metabolic adaptations in mammals.


Assuntos
Tecido Adiposo/metabolismo , Perfilação da Expressão Gênica , Focas Verdadeiras/genética , Transcriptoma , Adiposidade/genética , Animais , Metabolismo dos Carboidratos/genética , Metabolismo Energético/genética , Jejum , Metabolismo dos Lipídeos/genética , Proteoma/genética , Focas Verdadeiras/metabolismo , Desmame
18.
Ecol Lett ; 21(1): 63-71, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29096419

RESUMO

Individual behavioural specialisation has far-reaching effects on fitness and population persistence. Theory predicts that unconditional site fidelity, that is fidelity to a site independent of past outcome, provides a fitness advantage in unpredictable environments. However, the benefits of alternative site fidelity strategies driving intraspecific variation remain poorly understood and have not been evaluated in different environmental contexts. We show that contrary to expectation, strong and weak site fidelity strategies in migratory northern elephant seals performed similarly over 10 years, but the success of each strategy varied interannually and was strongly mediated by climate conditions. Strong fidelity facilitated stable energetic rewards and low risk, while weak fidelity facilitated high rewards and high risk. Weak fidelity outperformed strong fidelity in anomalous climate conditions, suggesting that the evolutionary benefits of site fidelity may be upended by increasing environmental variability. We highlight how individual behavioural specialisation may modulate the adaptive capacity of species to climate change.


Assuntos
Migração Animal , Mudança Climática , Focas Verdadeiras , Animais
19.
Proc Biol Sci ; 285(1872)2018 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-29436501

RESUMO

Large fluctuations in animal body mass in relation to life-history events can influence contaminant concentrations and toxicological risk. We quantified mercury concentrations in adult northern elephant seals (Mirounga angustirostris) before and after lengthy at sea foraging trips (n = 89) or fasting periods on land (n = 27), and showed that mercury concentrations in blood and muscle changed in response to these events. The highest blood mercury concentrations were observed after the breeding fast, whereas the highest muscle mercury concentrations were observed when seals returned to land to moult. Mean female blood mercury concentrations decreased by 30% across each of the two annual foraging trips, demonstrating a foraging-associated dilution of mercury concentrations as seals gained mass. Blood mercury concentrations increased by 103% and 24% across the breeding and moulting fasts, respectively, demonstrating a fasting-associated concentration of mercury as seals lost mass. In contrast to blood, mercury concentrations in female's muscle increased by 19% during the post-breeding foraging trip and did not change during the post-moulting foraging trip. While fasting, female muscle mercury concentrations increased 26% during breeding, but decreased 14% during moulting. Consequently, regardless of exposure, an animal's contaminant concentration can be markedly influenced by their annual life-history events.


Assuntos
Jejum , Comportamento Alimentar , Mercúrio/metabolismo , Focas Verdadeiras/fisiologia , Poluentes Químicos da Água/metabolismo , Pelo Animal/química , Animais , California , Feminino , Masculino , Mercúrio/sangue , Muda , Músculos/química , Reprodução , Poluentes Químicos da Água/sangue
20.
Gen Comp Endocrinol ; 266: 178-193, 2018 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-29852162

RESUMO

Several hormones are potential indicators of stress in free-ranging animals and provide information on animal health in managed-care settings. In response to stress, glucocorticoids (GC, e.g. cortisol) first appear in circulation but are later incorporated into other tissues (e.g. adipose) or excreted in feces or urine. These alternative matrices can be sampled remotely, or by less invasive means, than required for blood collection and are especially valuable in highly mobile species, like marine mammals. We characterized the timing and magnitude of several hormones in response to a stressor in bottlenose dolphins (Tursiops truncatus) and the subsequent incorporation of cortisol into blubber, and its metabolites excreted in feces. We evaluated the endocrine response to an acute stressor in bottlenose dolphins under managed care. We used a standardized stress protocol where dolphins voluntarily beached onto a padded platform and remained out of water for two hours; during the stress test blood samples were collected every 15 min and blubber biopsies were collected every hour (0, 60, and 120 min). Each subject was studied over five days: voluntary blood samples were collected on each of two days prior to the stress test; 1 and 2 h after the conclusion of the out-of-water stress test; and on the following two days after the stress test. Fecal samples were collected daily, each afternoon. The acute stressor resulted in increases in circulating ACTH, cortisol, and aldosterone during the stress test, and each returned to baseline levels within 2 h of the dolphin's return to water. Both cortisol and aldosterone concentrations were correlated with ACTH, suggesting both corticosteroids are at least partly regulated by ACTH. Thyroid hormone concentrations were generally unaffected by the acute stressor. Blubber cortisol increased during the stress test, and fecal GC excretion was elevated on the day of the stress test. We found that GCs in bottlenose dolphins can recover within hours of acute stress, and that cortisol release can be detected in alternate matrices within a few hours-within 2 h in blubber, and 3.5-5 h in fecal samples.


Assuntos
Golfinho Nariz-de-Garrafa/anatomia & histologia , Golfinho Nariz-de-Garrafa/sangue , Sistema Endócrino/metabolismo , Fezes/química , Estresse Fisiológico , Animais , Golfinho Nariz-de-Garrafa/fisiologia , Feminino , Hormônios/sangue , Masculino , Padrões de Referência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA