Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Am Chem Soc ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38598661

RESUMO

Native ion mobility/mass spectrometry is well-poised to structurally screen proteomes but characterizes protein structures in the absence of a solvent. This raises long-standing unanswered questions about the biological significance of protein structures identified through ion mobility/mass spectrometry. Using newly developed computational and experimental ion mobility/ion mobility/mass spectrometry methods, we investigate the unfolding of the protein ubiquitin in a solvent-free environment. Our data suggest that the folded, solvent-free ubiquitin observed by ion mobility/mass spectrometry exists in a largely native fold with an intact ß-grasp motif and α-helix. The ensemble of folded, solvent-free ubiquitin ions can be partitioned into kinetically stable subpopulations that appear to correspond to the structural heterogeneity of ubiquitin in solution. Time-resolved ion mobility/ion mobility/mass spectrometry measurements show that folded, solvent-free ubiquitin exhibits a strongly stretched-exponential time dependence, which simulations trace to a rugged energy landscape with kinetic traps. Unfolding rate constants are estimated to be approximately 800 to 20,000 times smaller than in the presence of water, effectively quenching the unfolding process on the time scale of typical ion mobility/mass spectrometry measurements. Our proposed unfolding pathway of solvent-free ubiquitin shares substantial characteristics with that established for the presence of solvent, including a polarized transition state with significant native content in the N-terminal ß-hairpin and α-helix. Our experimental and computational data suggest that (1) the energy landscape governing the motions of folded, solvent-free proteins is rugged in analogy to that of glassy systems; (2) large-scale protein motions may at least partially be determined by the amino acid sequence of a polypeptide chain; and (3) solvent facilitates, rather than controls, protein motions.

2.
Analyst ; 149(1): 125-136, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-37982746

RESUMO

Native ion mobility mass spectrometry has been used extensively to characterize ensembles of intrinsically disordered protein (IDP) conformers, but the extent to which the gaseous measurements provide realistic pictures of the solution conformations for such flexible proteins remains unclear. Therefore, we systematically studied the relationship between the solution and gaseous structural ensembles by measuring electrospray charge state and collision cross section (CCS) distributions for cationic and anionic forms of α-synuclein (αSN), an anionic protein in solution, as well as directly probed gas phase residue to residue distances via ion/ion reactions between gaseous α-synuclein cations and disulfonic acid linkers that form strong electrostatic bonds. We also combined results from in-solution protein crosslinking identified from native tandem mass spectrometry (MS/MS) with an initial αSN ensemble generated computationally by IDPConformerGenerator to generate an experimentally restrained solution ensemble of αSN. CCS distributions were directly calculated for the solution ensembles determined by NMR and compared to predicted gaseous conformers. While charge state and collision cross section distributions are useful for qualitatively describing the relative structural dynamics of proteins and major conformational changes induced by changes to solution states, the predicted and measured gas phase conformers include subpopulations that are significantly different than those expected from completely "freezing" solution conformations and preserving them in the gas phase. However, insights were gained on the various roles of solvent in stabilizing various conformers for extremely dynamic proteins like α-synuclein.


Assuntos
Proteínas Intrinsicamente Desordenadas , alfa-Sinucleína , alfa-Sinucleína/química , Conformação Proteica , Espectrometria de Massas em Tandem , Proteínas Intrinsicamente Desordenadas/química
3.
Anal Chem ; 92(6): 4459-4467, 2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-32083467

RESUMO

Glycoproteins play a central role in many biological processes including disease mechanisms. Nevertheless, because glycoproteins are heterogeneous entities, it remains unclear how glycosylation modulates the protein structure and function. Here, we assess the ability of tandem-trapped ion mobility spectrometry-mass spectrometry (tandem-TIMS/MS) to characterize the structure and sequence of the homotetrameric glycoprotein avidin. We show that (1) tandem-TIMS/MS retains native-like avidin tetramers with deeply buried solvent particles; (2) applying high activation voltages in the interface of tandem-TIMS results in collision-induced dissociation (CID) of avidin tetramers into compact monomers, dimers, and trimers with cross sections consistent with X-ray structures and reports from surface-induced dissociation (SID); (3) avidin oligomers are best described as heterogeneous ensembles with (essentially) random combinations of monomer glycoforms; (4) native top-down sequence analysis of the avidin tetramer is possible by CID in tandem-TIMS. Overall, our results demonstrate that tandem-TIMS/MS has the potential to correlate individual proteoforms to variations in protein structure.


Assuntos
Avidina/análise , Espectrometria de Mobilidade Iônica , Conformação Proteica , Espectrometria de Massas em Tandem
4.
J Am Soc Mass Spectrom ; 34(10): 2247-2258, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37729591

RESUMO

Ion activation methods carried out at gas pressures compatible with ion mobility separations are not yet widely established. This limits the analytical utility of emerging tandem-ion mobility spectrometers that conduct multiple ion mobility separations in series. The present work investigates the applicability of collision-induced dissociation (CID) at 1 to 3 mbar in a tandem-trapped ion mobility spectrometer (tandem-TIMS) to study the architecture of protein complexes. We show that CID of the homotetrameric protein complexes streptavidin (53 kDa), neutravidin (60 kDa), and concanavalin A (110 kDa) provides access to all subunits of the investigated protein complexes, including structurally informative dimers. We report on an "atypical" dissociation pathway, which for concanavalin A proceeds via symmetric partitioning of the precursor charges and produces dimers with the same charge states that were previously reported from surface induced dissociation. Our data suggest a correlation between the formation of subunits by CID in tandem-TIMS/MS, their binding strengths in the native tetramer structures, and the applied activation voltage. Ion mobility spectra of in situ-generated subunits reveal a marked structural heterogeneity inconsistent with annealing into their most stable gas phase structures. Structural transitions are observed for in situ-generated subunits that resemble the transitions reported from collision-induced unfolding of natively folded proteins. These observations indicate that some aspects of the native precursor structure is preserved in the subunits generated from disassembly of the precursor complex. We rationalize our observations by an approximately 100-fold shorter activation time scale in comparison to traditional CID in a collision cell. Finally, the approach discussed here to conduct CID at elevated pressures appears generally applicable also for other types of tandem-ion mobility spectrometers.


Assuntos
Proteínas , Concanavalina A/química , Proteínas/química
5.
Artigo em Inglês | MEDLINE | ID: mdl-37333518

RESUMO

Cellular processes are usually carried out collectively by the entirety of all proteins present in a biological cell, i.e. the proteome. Mass spectrometry-based methods have proven particularly successful in identifying and quantifying the constituent proteins of proteomes, including different molecular forms of a protein. Nevertheless, protein sequences alone do not reveal the function or dysfunction of the identified proteins. A straightforward way to assign function or dysfunction to proteins is characterization of their structures and dynamics. However, a method capable to characterize detailed structures of proteins and protein complexes in a large-scale, systematic manner within the context of cellular processes does not yet exist. Here, we discuss the potential of tandem-ion mobility / mass spectrometry (tandem-IM/MS) methods to provide such ability. We highlight the capability of these methods using two case studies on the protein systems ubiquitin and avidin using the tandem-TIMS/MS technology developed in our laboratory and discuss these results in the context of other developments in the broader field of tandem-IM/MS.

6.
J Phys Chem B ; 127(25): 5553-5565, 2023 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-37311097

RESUMO

Characterizing structures of protein complexes and their disease-related aberrations is essential to understanding molecular mechanisms of many biological processes. Electrospray ionization coupled with hybrid ion mobility/mass spectrometry (ESI-IM/MS) methods offer sufficient sensitivity, sample throughput, and dynamic range to enable systematic structural characterization of proteomes. However, because ESI-IM/MS characterizes ionized protein systems in the gas phase, it generally remains unclear to what extent the protein ions characterized by IM/MS have retained their solution structures. Here, we discuss the first application of our computational structure relaxation approximation [Bleiholder, C.; et al. J. Phys. Chem. B 2019, 123 (13), 2756-2769] to assign structures of protein complexes in the range from ∼16 to ∼60 kDa from their "native" IM/MS spectra. Our analysis shows that the computed IM/MS spectra agree with the experimental spectra within the errors of the methods. The structure relaxation approximation (SRA) indicates that native backbone contacts appear largely retained in the absence of solvent for the investigated protein complexes and charge states. Native contacts between polypeptide chains of the protein complex appear to be retained to a comparable extent as contacts within a folded polypeptide chain. Our computations also indicate that the hallmark "compaction" often observed for protein systems in native IM/MS measurements appears to be a poor indicator of the extent to which native residue-residue interactions are lost in the absence of solvent. Further, the SRA indicates that structural reorganization of the protein systems in IM/MS measurements appears driven largely by remodeling of the protein surface that increases its hydrophobic content by approximately 10%. For the systems studied here, this remodeling of the protein surface appears to occur mainly by structural reorganization of surface-associated hydrophilic amino acid residues not associated with ß-strand secondary structure elements. Properties related to the internal protein structure, as assessed by void volume or packing density, appear unaffected by remodeling of the surface. Taken together, the structural reorganization of the protein surface appears to be generic in nature and to sufficiently stabilize protein structures to render them metastable on the time scale of IM/MS measurements.


Assuntos
Proteínas de Membrana , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas por Ionização por Electrospray/métodos , Aminoácidos , Íons/química , Solventes
7.
J Am Soc Mass Spectrom ; 30(7): 1204-1212, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31025294

RESUMO

Ion mobility spectrometry-mass spectrometry (IMS-MS) has demonstrated the ability to characterize structures of weakly-bound peptide assemblies. However, these assemblies can potentially dissociate during the IMS-MS measurement if they undergo energetic ion-neutral collisions. Here, we investigate the ability of tandem-trapped ion mobility spectrometry-mass spectrometry (TIMS-TIMS-MS) to retain weakly-bound peptide assemblies. We assess ion heating and dissociaton in the tandem-TIMS instrument using bradykinin and its assemblies as reference systems. Our data indicate that non-covalent bradykinin assemblies are largely preserved in TIMS-TIMS under carefully selected operating conditions. Importantly, we observe quadruply-charged bradykinin tetramers, which attests to the "softness" of our instrument. Graphical Abstract.


Assuntos
Bradicinina/química , Espectrometria de Mobilidade Iônica/métodos , Espectrometria de Massas em Tandem/métodos , Desenho de Equipamento , Calefação , Espectrometria de Mobilidade Iônica/instrumentação , Íons/química , Multimerização Proteica , Espectrometria de Massas em Tandem/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA