Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
J Exp Zool B Mol Dev Evol ; 340(8): 518-530, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-32779333

RESUMO

Unique expression patterns of the 5' HoxA genes are associated with the evolution and development of novel features including claspers in cartilaginous fishes, modified pectoral fins in batoids, and the yolk sac extension in Cypriniformes. Here, we demonstrate a role for HoxA11a and HoxA13a in demarcating the hindgut in fishes of the family Gobiidae, including a novel sphincter called the intestinal rectal sphincter (IRS). Disruption of 5' HoxA expression, via manipulation of retinoic acid signaling, results in failure of the IRS and/or vent to develop. Furthermore, exposure to HoxA disruptors alters 5' HoxA expression, in association with developmental phenotypes, demonstrating a functional link between 5' HoxA expression and development of a novel feature in the bluebanded goby, Lythrypnus dalli.


Assuntos
Perciformes , Animais , Perciformes/metabolismo , Peixes , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo
2.
J Fish Biol ; 100(1): 82-91, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34622452

RESUMO

In this study, the authors report the first record of egg masses deposited in solitary tunicates by the snubnose sculpin, Orthonopias triacis, from the Northeastern Pacific. Four egg masses were discovered in the tunicate Ascidia ceratodes that were genetically determined to be O. triacis. Female O. triacis had long ovipositors that allow deposition of their eggs inside the atrium of the tunicates. A comparison of host-tunicate size with ovipositor length of sculpins from the Northwestern Pacific, including the genera Furcina and Pseudoblennius, revealed that O. triacis had shorter ovipositors and spawned in the atrium of smaller species of tunicates. Ancestral state reconstruction of egg deposition in solitary tunicates using 1.86Mbp RNAseq data of 20 sculpin species from Northeastern and Northwestern Pacific revealed that this unusual spawning behaviour may have evolved convergently in different species occurring in the Northeastern vs. the Northwestern Pacific.


Assuntos
Perciformes , Urocordados , Animais , Feminino
3.
Proc Natl Acad Sci U S A ; 114(12): 3085-3090, 2017 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-28265087

RESUMO

Active-learning pedagogies have been repeatedly demonstrated to produce superior learning gains with large effect sizes compared with lecture-based pedagogies. Shifting large numbers of college science, technology, engineering, and mathematics (STEM) faculty to include any active learning in their teaching may retain and more effectively educate far more students than having a few faculty completely transform their teaching, but the extent to which STEM faculty are changing their teaching methods is unclear. Here, we describe the development and application of the machine-learning-derived algorithm Decibel Analysis for Research in Teaching (DART), which can analyze thousands of hours of STEM course audio recordings quickly, with minimal costs, and without need for human observers. DART analyzes the volume and variance of classroom recordings to predict the quantity of time spent on single voice (e.g., lecture), multiple voice (e.g., pair discussion), and no voice (e.g., clicker question thinking) activities. Applying DART to 1,486 recordings of class sessions from 67 courses, a total of 1,720 h of audio, revealed varied patterns of lecture (single voice) and nonlecture activity (multiple and no voice) use. We also found that there was significantly more use of multiple and no voice strategies in courses for STEM majors compared with courses for non-STEM majors, indicating that DART can be used to compare teaching strategies in different types of courses. Therefore, DART has the potential to systematically inventory the presence of active learning with ∼90% accuracy across thousands of courses in diverse settings with minimal effort.


Assuntos
Aprendizagem Baseada em Problemas/normas , Ciência/educação , Ensino/normas , Humanos , Som , Estudantes , Tecnologia , Universidades/normas
4.
J Fish Biol ; 96(4): 939-949, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32048298

RESUMO

We examined the reproductive life history of calico surfperch (Amphistichus koelzi), including mating season, pregnancy, gestation and multiple paternity utilizing restriction site-associated DNA sequencing. Furthermore, we compared the mating season of calico with barred (Amphistichus argenteus), walleye (Hyperprosopon argenteum) and silver (Hyperprosopon ellipticum) surfperches to determine if the timing of reproduction is divergent within and between the genera. In calico surfperch, the mating season occurs from October to November, and females gestate from December to May. All broods exhibit multiple paternity with a range of four to seven sires per brood. The mating season of calico overlaps completely with barred surfperch; however, barred surfperches have a protracted mating season which extends until the beginning of December, which may be due to differences in reproductive strategy such as size at first reproduction. In the genus, the Hyperprosopon mating season begins earlier than Amphistichus, with divergence in the onset of mating between Hyperprosopon congeners of approximately 1 month.


Assuntos
Perciformes/fisiologia , Comportamento Sexual Animal/fisiologia , Animais , Feminino , Masculino , Perciformes/genética , Reprodução , Estações do Ano , Análise de Sequência de DNA
5.
Mol Phylogenet Evol ; 75: 245-51, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24486989

RESUMO

The systematics of the skates in the family Rajidae have been contentious for over 250years, with most studies inferring relationships among geographically clustered species, and non-overlapping taxa and data sets. Rajid skates are oviparous, and lay egg capsules with a single embryo. However, two species exhibit a derived form of egg laying, with multiple embryos per egg capsule. We provide a molecular assessment of the phylogenetic relationships of skates in the family Rajidae based on three mitochondrial genes. The resulting topology supports monophyly the family. However the genusRajais polyphyletic, and several species assemblages need to be revised. We propose a new assemblage, the Rostrajini, which organizesrajid species into three well-supported tribal lineages for the first time. Further, these data provide an independent assessment of monophyly for the two species exhibiting multiple embryos per egg capsule, supporting their status as the unique genusBeringraja. In addition, we find that among the different size classes of egg capsules, ranging from 1 to 8 embryos per capsule in this genus, there is variation in frequency and survivorship. InBeringraja binoculata, the strategy of having two embryos per egg capsule occurs most frequently and with the highest fitness.


Assuntos
Óvulo/fisiologia , Filogenia , Reprodução/fisiologia , Rajidae/genética , Rajidae/fisiologia , Animais , DNA Mitocondrial/genética , Embrião não Mamífero , Aptidão Genética , Análise de Sequência de DNA
6.
J Morphol ; 284(9): e21632, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37585230

RESUMO

Holocephalans exhibit auxiliary appendages called pre-pelvic claspers (PPCs) that are located anterior to the pelvic fins, while pelvic claspers are pelvic fin modifications located posteriorly as modified metapterygia. Articulation points of the PPCs have not previously been imaged or evaluated in a comparative context, therefore, they may represent modified pelvic fin structures if they articulate with the propterygium. Alternatively, they could represent the only example of an independent third set of paired appendages in an extant taxon, if they articulate independently from any pelvic fin basal cartilages, challenging the current paradigm that extant jawed vertebrates are constrained to two sets of paired appendages. Two extinct groups, including Placoderms and Acanthodians, exhibit variation in the number of paired appendages, suggesting this may be a plesiomorphic trait. We evaluated PPC developmental growth rates, morphology, and articulation points in spotted ratfish (Hydrolagus Colliei, Holocephali). We also compared variation in PPC morphology among representatives of the three extant holocephalan families. Both, the pre-pelvic and pelvic claspers exhibit a dramatic surge in growth at sexual maturity, and then level off, suggesting synchronous development via shared hormonal regulation. While mature females are larger than males, pelvic fin growth and development is faster in males, suggesting a selective advantage to larger fins with faster development. Finally, microcomputed tomography scans revealed that PPCs are not modified propterygia, nor do they articulate with the propterygium. They articulate with the anterior pre-pelvic process on the anterior puboischiadic bar (or pelvic girdle), suggesting that while they are associated with the pelvic girdle, they may indeed represent a third, independent set of paired appendages in extant holocephalans.


Assuntos
Nadadeiras de Animais , Peixes , Masculino , Feminino , Animais , Vertebrados/anatomia & histologia , Vertebrados/classificação , Vertebrados/fisiologia , Microtomografia por Raio-X , Peixes/anatomia & histologia , Peixes/classificação , Peixes/crescimento & desenvolvimento , Peixes/fisiologia , Nadadeiras de Animais/anatomia & histologia , Nadadeiras de Animais/crescimento & desenvolvimento , Pelve/anatomia & histologia
7.
Mol Phylogenet Evol ; 64(3): 416-27, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22580464

RESUMO

The genus Lythrypnus is a group of marine gobies that exhibit extreme gender flexibility as bidirectional sex changers. The genus consists of 20 described species and several undescribed species that are distributed in the Americas. Five species have been characterized with respect to sex allocation and gonad morphology. The hormonal, morphological, and behavioral aspects of sex change have been studied extensively for one species, L. dalli. These data, however, have not been interpreted in an evolutionary context because a phylogenetic hypothesis has not previously been proposed for the genus Lythrypnus. We propose the first phylogenetic hypothesis for the genus based on molecular data from three mitochondrial genes (12s, ND2, and Cytb), one nuclear gene (Rag1) and one nuclear intron (S7). We also include three previously undescribed Lythrypnus species. Our results support the monophyly of the genus with L. heterochroma, an Atlantic species, as the basal taxon. After the divergence of L. heterochroma, there are two main clades, one comprised of species distributed in the Atlantic, the other comprised of species distributed in the Pacific. These data indicate an Atlantic origin for the genus, followed by divergence after the closure of the Isthmus of Panama. Our data also support the monophyly of three previously described species complexes, the L. rhizophora complex and L. dalli complex in the Pacific, and the L. mowbrayi complex in the Atlantic. We mapped patterns of sex allocation within this genus onto the fully resolved and supported topology, and found that sexual plasticity and gender flexibility is likely a synapomorphy for the genus. Overall our results create a well-supported framework to understand the phylogeography of the genus, and to interpret the evolution of sex allocation in Lythrypnus gobies.


Assuntos
Especiação Genética , Perciformes/genética , Filogenia , Filogeografia , Sexo , Animais , Núcleo Celular/genética , DNA Mitocondrial/genética , Feminino , Organismos Hermafroditas/classificação , Organismos Hermafroditas/genética , Íntrons , Masculino , Perciformes/classificação , Perciformes/fisiologia , Análise de Sequência de DNA
8.
Mol Ecol ; 19(10): 2089-105, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20345669

RESUMO

Sympatric speciation has been contentious since its inception, yet is increasingly recognized as important based on accumulating theoretical and empirical support. Here, we present a compelling case of sympatric speciation in a taxon of marine reef fishes using a comparative and mechanistic approach. Hexagrammos otakii and H. agrammus occur in sympatry throughout their ranges. Molecular sequence data from six loci, with complete sampling of the genus, support monophyly of these sister species. Although hybridization occurs frequently with an allopatric congener in an area of slight distributional overlap, we found no F(1) hybrids between the focal sympatric taxa throughout their coextensive ranges. We present genetic evidence for complete reproductive isolation based on SNP analysis of 382 individuals indicating fixed polymorphisms, with no shared haplotypes or genotypes, between sympatric species. To address questions of speciation, we take a mechanistic approach and directly compare aspects of reproductive isolation between allopatric and sympatric taxa both in nature and in the laboratory. We conclude that the buildup of reproductive isolation is strikingly different in sympatric vs. allopatric taxa, consistent with theoretical predictions. Lab reared hybrids from allopatric species crosses exhibit severe fitness effects in the F(1) or backcross generation. No intrinsic fitness effects are observed in F(1) hybrids from sympatric species pairs, however these treatments exhibited reduced fertilization success and complete pre-mating isolation is implied in nature because F(1) hybrid adults do not occur. Our study addresses limitations of previous studies and supports new criteria for inferring sympatric speciation.


Assuntos
Evolução Molecular , Peixes/genética , Especiação Genética , Filogenia , Animais , Hibridização Genômica Comparativa , Cruzamentos Genéticos , Peixes/classificação , Genética Populacional , Hibridização Genética , Polimorfismo de Nucleotídeo Único , Reprodução/genética , Análise de Sequência de DNA
9.
J Morphol ; 279(8): 1155-1170, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29878395

RESUMO

Batoids are a diverse clade of flat cartilaginous fishes that occur primarily in benthic marine habitats. The skates and rays typically use their flexible pectoral fins for feeding and propulsion via undulatory swimming. However, two groups of rays have adopted a pelagic or bentho-pelagic lifestyle and utilize oscillatory swimming-the Myliobatidae and Gymnuridae. The myliobatids have evolved cephalic lobes, anteriorly extended appendages that are optimized for feeding, while their pectoral fins exhibit several modifications that likely arose in association with functional optimization of pelagic cruising via oscillatory flight. Here, we examine variation in fin ray distribution and ontogenetic timing of fin ray development in batoid pectoral fins in an evolutionary context using the following methods: radiography, computed tomography, dissections, and cleared and stained specimens. We propose an index for characterizing variation in the distribution of pectoral fin rays. While undulatory swimmers exhibit symmetry or slight anterior bias, we found a posterior shift in the distribution of fin rays that arose in two distinct lineages in association with oscillatory swimming. Undulatory and oscillatory swimmers occupy nonoverlapping morphospace with respect to fin ray distribution illustrating significant remodeling of pectoral fins in oscillatory swimmers. Further, we describe a derived skeletal feature in anterior pectoral fins of the Myliobatidae that is likely associated with optimization of oscillatory swimming. By examining the distribution of fin rays with clearly defined articulation points, we were able to infer evolutionary trends and body plan remodeling associated with invasion of the pelagic environment. Finally, we found that the number and distribution of fin rays is set early in development in the little skate, round stingray, and cownose ray, suggesting that fin ray counts from specimens after birth or hatching are representative of adults and therefore comparable among species.


Assuntos
Nadadeiras de Animais/anatomia & histologia , Nadadeiras de Animais/fisiologia , Evolução Biológica , Rajidae/anatomia & histologia , Rajidae/fisiologia , Natação/fisiologia , Animais , Fenômenos Biomecânicos , Padronização Corporal , Filogenia
10.
CBE Life Sci Educ ; 17(1)2018.
Artigo em Inglês | MEDLINE | ID: mdl-29326102

RESUMO

Many efforts to improve science teaching in higher education focus on a few faculty members at an institution at a time, with limited published evidence on attempts to engage faculty across entire departments. We created a long-term, department-wide collaborative professional development program, Biology Faculty Explorations in Scientific Teaching (Biology FEST). Across 3 years of Biology FEST, 89% of the department's faculty completed a weeklong scientific teaching institute, and 83% of eligible instructors participated in additional semester-long follow-up programs. A semester after institute completion, the majority of Biology FEST alumni reported adding active learning to their courses. These instructor self-reports were corroborated by audio analysis of classroom noise and surveys of students in biology courses on the frequency of active-learning techniques used in classes taught by Biology FEST alumni and nonalumni. Three years after Biology FEST launched, faculty participants overwhelmingly reported that their teaching was positively affected. Unexpectedly, most respondents also believed that they had improved relationships with departmental colleagues and felt a greater sense of belonging to the department. Overall, our results indicate that biology department-wide collaborative efforts to develop scientific teaching skills can indeed attract large numbers of faculty, spark widespread change in teaching practices, and improve departmental relations.


Assuntos
Biologia/educação , Desenvolvimento de Programas , Ensino , Docentes , Objetivos , Humanos , Motivação , Aprendizagem Baseada em Problemas , Estudantes , Inquéritos e Questionários
11.
Evodevo ; 8: 24, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29214009

RESUMO

BACKGROUND: Batoids exhibit unique body plans with derived fin morphologies, such as the anteriorly expanded pectoral fins that fuse to the head, or distally extended anterior pelvic fin lobes used for a modified swimming technique utilized by skates (Rajidae). The little skate (Leucoraja erinacea), exhibits both of these unique fin morphologies. These fin modifications are not present in a typical shark body plan, and little is known regarding the mechanisms underlying their development. A recent study identified a novel apical ectodermal ridge (AER) associated with the development of the anterior pectoral fin in the little skate, but the role of the posterior HoxA genes was not featured during skate fin development. RESULTS: We present the first evidence for HoxA expression (HoxA11 and HoxA13) in novel AER domains associated with the development of three novel fin morphologies in a representative batoid, L. erinacea. We found HoxA13 expression associated with the recently described novel AER in the anterior pectoral fin, and HoxA11 expression in a novel AER domain in the anterior pelvic fin that we describe here. We find that both HoxA11 and HoxA13 are expressed in claspers, and while HoxA11 is expressed in pelvic fins and claspers, HoxA13 is expressed exclusively in developing claspers of males. Finally, HoxA11 expression is associated with the developing fin rays in paired fins. CONCLUSION: Overall, these results indicate that the posterior HoxA genes play an important role in the morphological evolution of paired fins in a representative batoid. These data suggest that the batoids utilize a unique Hox code, where the posterior HoxA genes exhibit distinct expression patterns that are likely associated with specification of novel fin morphologies.

12.
Evodevo ; 5: 44, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25908959

RESUMO

BACKGROUND: Hox genes are master regulatory genes that specify positional identities during axial development in animals. Discoveries regarding their concerted expression patterns have commanded intense interest due to their complex regulation and specification of body plan features in jawed vertebrates. For example, the posterior HoxD genes switch to an inverted collinear expression pattern in the mouse autopod where HoxD13 switches from a more restricted to a less restricted domain relative to its neighboring gene on the cluster. We refer to this program as the 'distal phase' (DP) expression pattern because it occurs in distal regions of paired fins and limbs, and is regulated independently by elements in the 5' region upstream of the HoxD cluster. However, few taxa have been evaluated with respect to this pattern, and most studies have focused on pectoral fin morphogenesis, which occurs relatively early in development. RESULTS: Here, we demonstrate for the first time that the DP expression pattern occurs with the posterior HoxA genes, and is therefore not solely associated with the HoxD gene cluster. Further, DP Hox expression is not confined to paired fins and limbs, but occurs in a variety of body plan features, including paddlefish barbels - sensory adornments that develop from the first mandibular arch (the former 'Hox-free zone), and the vent (a medial structure that is analogous to a urethra). We found DP expression of HoxD13 and HoxD12 in the paddlefish barbel; and we present the first evidence for DP expression of the HoxA genes in the hindgut and vent of three ray-finned fishes. The HoxA DP expression pattern is predicted by the recent finding of a shared 5' regulatory architecture in both the HoxA and HoxD clusters, but has not been previously observed in any body plan feature. CONCLUSIONS: The Hox DP expression pattern appears to be an ancient module that has been co-opted in a variety of structures adorning the vertebrate bauplan. This module provides a shared genetic program that implies deep homology of a variety of distally elongated structures that has played a significant role in the evolution of morphological diversity in vertebrates.

13.
Ecol Evol ; 4(12): 2316-29, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25360270

RESUMO

According to Bateman's principle, female fecundity is limited relative to males, setting the expectation that males should be promiscuous, while females should be choosy and select fewer mates. However, several surfperches (Embiotocidae) exhibit multiple paternity within broods indicating that females mate with multiple males throughout the mating season. Previous studies found no correlation between mating success and reproductive success (i.e., a Bateman gradient). However, by including samples from a broader range of reproductive size classes, we found evidence of a Bateman gradient in two surfperch species from distinct embiotocid clades. Using microsatellite analyses, we found that 100% of the spotfin surfperch families sampled exhibit multiple paternity (Hyperprosopon anale, the basal taxon from the only clade that has not previously been investigated) indicating that this tactic is a shared reproductive strategy among surfperches. Further, we detected evidence for a Bateman gradient in H. anale; however, this result was not significant after correction for biases. Similarly, we found evidence for multiple paternity in 83% of the shiner surfperch families (Cymatogaster aggregata) sampled. When we combine these data with a previous study on the same species, representing a larger range of reproductive size classes and associated brood sizes, we detect a Bateman gradient in shiner surfperch for the first time that remains significant after several conservative tests for bias correction. These results indicate that sexual selection is likely complex in this system, with the potential for conflicting optima between sexes, and imply a positive shift in fertility (i.e., increasing number) and reproductive tactic with respect to the mating system and number of sires throughout the reproductive life history of females. We argue that the complex reproductive natural history of surfperches is characterized by several traits that may be associated with cryptic female choice, including protracted oogenesis, uterine sac complexity, and sperm storage.

14.
Genome Biol Evol ; 4(9): 937-53, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22851613

RESUMO

Vertebrates have experienced two rounds of whole-genome duplication (WGD) in the stem lineages of deep nodes within the group and a subsequent duplication event in the stem lineage of the teleosts-a highly diverse group of ray-finned fishes. Here, we present the first full Hox gene sequences for any member of the Acipenseriformes, the American paddlefish, and confirm that an independent WGD occurred in the paddlefish lineage, approximately 42 Ma based on sequences spanning the entire HoxA cluster and eight genes on the HoxD gene cluster. These clusters comprise different HOX loci and maintain conserved synteny relative to bichir, zebrafish, stickleback, and pufferfish, as well as human, mouse, and chick. We also provide a gene genealogy for the duplicated fzd8 gene in paddlefish and present evidence for the first Hox14 gene in any ray-finned fish. Taken together, these data demonstrate that the American paddlefish has an independently duplicated genome. Substitution patterns of the "alpha" paralogs on both the HoxA and HoxD gene clusters suggest transcriptional inactivation consistent with functional diploidization. Further, there are similarities in the pattern of sequence divergence among duplicated Hox genes in paddlefish and teleost lineages, even though they occurred independently approximately 200 Myr apart. We highlight implications on comparative analyses in the study of the "fin-limb transition" as well as gene and genome duplication in bony fishes, which includes all ray-finned fishes as well as the lobe-finned fishes and tetrapod vertebrates.


Assuntos
Peixes/genética , Duplicação Gênica , Genes Homeobox/genética , Genoma , Animais , Cromossomos Artificiais Bacterianos/genética , Cromossomos Artificiais Bacterianos/metabolismo , Clonagem Molecular , Evolução Molecular , Peixes/classificação , Modelos Genéticos , Anotação de Sequência Molecular , Família Multigênica , Filogenia , Análise de Sequência de DNA , Sintenia
15.
Evolution ; 63(6): 1574-92, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19222565

RESUMO

Gene duplication is widely regarded as the predominant mechanism by which genes with new functions and associated phenotypic novelties arise. A whole genome duplication occurred shortly before the most recent common ancestor of teleosts, the most diverse chordate group, resulting in duplication and retention of many Hox cluster genes. Because they play a key role in determination of body plan morphology, it has been widely assumed that Hox genes play a key role in the evolution of diverse metazoan body plans. However, it is not clear whether certain aspects of molecular evolution, such as asymmetric divergence and neofunctionalization, contribute to the initial retention of paralogs. We investigate the molecular evolution and functional divergence of the duplicated HoxA13 paralogs in zebrafish to determine when asymmetric divergence and functional divergence occurred after the duplication event. Our findings demonstrate the contribution of gene duplication to the evolution of novel features through evolutionary mechanisms other than those traditionally investigated, such as positive selection occurring immediately after gene duplication. Rather, we find a latent build up of molecular changes in a gene associated with the development of a novel feature in a very diverse group of fishes.


Assuntos
Cipriniformes , Evolução Molecular , Proteínas de Peixes/genética , Duplicação Gênica , Proteínas de Homeodomínio/genética , Isoformas de Proteínas/genética , Peixe-Zebra , Sequência de Aminoácidos , Animais , Cipriniformes/classificação , Cipriniformes/genética , Cipriniformes/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes , Especiação Genética , Hibridização In Situ , Dados de Sequência Molecular , Filogenia , Seleção Genética , Alinhamento de Sequência , Análise de Sequência de DNA , Peixe-Zebra/genética , Peixe-Zebra/crescimento & desenvolvimento
16.
Mol Biol Evol ; 23(5): 887-92, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16368775

RESUMO

Gene and genome duplications provide a source of genetic material for mutation, drift, and selection to act upon, making new evolutionary opportunities possible. As a result, many have argued that genome duplication is a dominant factor in the evolution of complexity and diversity. However, a clear correlation between a genome duplication event and increased complexity and diversity is not apparent, and there are inconsistencies in the patterns of diversity invoked to support this claim. Interestingly, several estimates of genome duplication events in vertebrates are preceded by multiple extinct lineages, resulting in preduplication gaps in extant taxa. Here we argue that gen(om)e duplication could contribute to reduced risk of extinction via functional redundancy, mutational robustness, increased rates of evolution, and adaptation. The timeline for these processes to unfold would not predict immediate increases in species diversity after the duplication event. Rather, reduced probabilities of extinction would predict a latent period between a genome duplication and its effect on species diversity or complexity. In this paper, we will develop the idea that genome duplication could contribute to species diversity through reduced probability of extinction.


Assuntos
Evolução Molecular , Duplicação Gênica , Genômica , Animais , Caenorhabditis elegans , Linhagem da Célula , Diploide , Peixes , Variação Genética , Genoma , Modelos Genéticos , Mutação , Filogenia
17.
Mol Biol Evol ; 23(1): 121-36, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16162861

RESUMO

The Hox gene complement of zebrafish, medaka, and fugu differs from that of other gnathostome vertebrates. These fishes have seven to eight Hox clusters compared to the four Hox clusters described in sarcopterygians and shark. The clusters in different teleost lineages are orthologous, implying that a "fish-specific" Hox cluster duplication has occurred in the stem lineage leading to the most recent common ancestor of zebrafish and fugu. The timing of this event, however, is unknown. To address this question, we sequenced four Hox genes from taxa representing basal actinopterygian and teleost lineages and compared them to known sequences from shark, coelacanth, zebrafish, and other teleosts. The resulting gene genealogies suggest that the fish-specific Hox cluster duplication occurred coincident with the origin of crown group teleosts. In addition, we obtained evidence for an independent Hox cluster duplication in the sturgeon lineage (Acipenseriformes). Finally, results from HoxA11 suggest that duplicated Hox genes have experienced diversifying selection immediately after the duplication event. Taken together, these results support the notion that the duplicated Hox genes of teleosts were causally relevant to adaptive evolution during the initial teleost radiation.


Assuntos
Evolução Molecular , Peixes/genética , Duplicação Gênica , Genes Homeobox/genética , Especiação Genética , Filogenia , Animais , Sequência de Bases , Primers do DNA , Funções Verossimilhança , Modelos Genéticos , Dados de Sequência Molecular , Análise de Sequência de DNA
18.
Mol Phylogenet Evol ; 32(3): 986-97, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15288071

RESUMO

Ideally, organisms are grouped into monophyletic assemblages reflecting their evolutionary histories. Single (molecular) markers can reflect the evolutionary history of the marker, rather than the species in question, therefore, phylogenetic relationships should be inferred from adequate sampling of characters. Because the use of multiple loci greatly improves the resolving power of the molecular assay, we constructed a molecular phylogeny of the family Hexagrammidae based on six loci, including two mitochondrial and four nuclear loci. The resulting molecular phylogeny, from the combined data, was significantly different from the morphological topology suggested by Shinohara [Memoirs of the Faculty of Fisheries, Hokkaido University 41 (1994) 1]. Our data support a monophyletic assemblage for the genera Hexagrammos and Pleurogrammus. However, other taxa traditionally included in the family Hexagrammidae did not form a monophyletic assemblage. The monotypic genus Ophiodon was more closely associated with cottids than with other hexagrammids. Our data concur with the morphological topology in that the genera Zaniolepis and Oxylebius formed a monophyletic clade, which was distinct and basal to the remaining hexagrammids, seven cottids and one agonid.


Assuntos
Peixes/genética , Filogenia , Alaska , Animais , Sequência de Bases , Teorema de Bayes , California , Calmodulina/genética , Análise por Conglomerados , Creatina Quinase/genética , DNA Mitocondrial/genética , DNA Ribossômico/genética , Japão , L-Lactato Desidrogenase/genética , Modelos Genéticos , Dados de Sequência Molecular , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA