Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 608(7922): 336-345, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35896751

RESUMO

In European and many African, Middle Eastern and southern Asian populations, lactase persistence (LP) is the most strongly selected monogenic trait to have evolved over the past 10,000 years1. Although the selection of LP and the consumption of prehistoric milk must be linked, considerable uncertainty remains concerning their spatiotemporal configuration and specific interactions2,3. Here we provide detailed distributions of milk exploitation across Europe over the past 9,000 years using around 7,000 pottery fat residues from more than 550 archaeological sites. European milk use was widespread from the Neolithic period onwards but varied spatially and temporally in intensity. Notably, LP selection varying with levels of prehistoric milk exploitation is no better at explaining LP allele frequency trajectories than uniform selection since the Neolithic period. In the UK Biobank4,5 cohort of 500,000 contemporary Europeans, LP genotype was only weakly associated with milk consumption and did not show consistent associations with improved fitness or health indicators. This suggests that other reasons for the beneficial effects of LP should be considered for its rapid frequency increase. We propose that lactase non-persistent individuals consumed milk when it became available but, under conditions of famine and/or increased pathogen exposure, this was disadvantageous, driving LP selection in prehistoric Europe. Comparison of model likelihoods indicates that population fluctuations, settlement density and wild animal exploitation-proxies for these drivers-provide better explanations of LP selection than the extent of milk exploitation. These findings offer new perspectives on prehistoric milk exploitation and LP evolution.


Assuntos
Arqueologia , Indústria de Laticínios , Doença , Genética Populacional , Lactase , Leite , Seleção Genética , Animais , Animais Selvagens , Bancos de Espécimes Biológicos , Cerâmica/história , Estudos de Coortes , Indústria de Laticínios/história , Europa (Continente)/epidemiologia , Europa (Continente)/etnologia , Fome Epidêmica/estatística & dados numéricos , Frequência do Gene , Genótipo , História Antiga , Humanos , Lactase/genética , Leite/metabolismo , Reino Unido
2.
Nature ; 551(7680): 368-372, 2017 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-29144465

RESUMO

Ancient DNA studies have established that Neolithic European populations were descended from Anatolian migrants who received a limited amount of admixture from resident hunter-gatherers. Many open questions remain, however, about the spatial and temporal dynamics of population interactions and admixture during the Neolithic period. Here we investigate the population dynamics of Neolithization across Europe using a high-resolution genome-wide ancient DNA dataset with a total of 180 samples, of which 130 are newly reported here, from the Neolithic and Chalcolithic periods of Hungary (6000-2900 bc, n = 100), Germany (5500-3000 bc, n = 42) and Spain (5500-2200 bc, n = 38). We find that genetic diversity was shaped predominantly by local processes, with varied sources and proportions of hunter-gatherer ancestry among the three regions and through time. Admixture between groups with different ancestry profiles was pervasive and resulted in observable population transformation across almost all cultural transitions. Our results shed new light on the ways in which gene flow reshaped European populations throughout the Neolithic period and demonstrate the potential of time-series-based sampling and modelling approaches to elucidate multiple dimensions of historical population interactions.


Assuntos
Fazendeiros/história , Fluxo Gênico/genética , Variação Genética , Migração Humana/história , DNA Antigo/análise , Conjuntos de Dados como Assunto , Feminino , Alemanha , História Antiga , Humanos , Hungria , Masculino , Dinâmica Populacional , Espanha , Análise Espaço-Temporal
4.
Sci Rep ; 12(1): 16982, 2022 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-36217009

RESUMO

The Great Hungarian Plain (GHP) served as a geographic funnel for population mobility throughout prehistory. Genomic and isotopic research demonstrates non-linear genetic turnover and technological shifts between the Copper and Iron Ages of the GHP, which influenced the dietary strategies of numerous cultures that intermixed and overlapped through time. Given the complexities of these prehistoric cultural and demographic processes, this study aims to identify and elucidate diachronic and culture-specific dietary signatures. We report on stable carbon and nitrogen isotope ratios from 74 individuals from nineteen sites in the GHP dating to a ~ 3000-year time span between the Early Bronze and Early Iron Ages. The samples broadly indicate a terrestrial C3 diet with nuanced differences amongst populations and through time, suggesting exogenous influences that manifested in subsistence strategies. Slightly elevated δ15N values for Bronze Age samples imply higher reliance on protein than in the Iron Age. Interestingly, the Füzesabony have carbon values typical of C4 vegetation indicating millet consumption, or that of a grain with comparable δ13C ratios, which corroborates evidence from outside the GHP for its early cultivation during the Middle Bronze Age. Finally, our results also suggest locally diverse subsistence economies for GHP Scythians.


Assuntos
Carbono , Cobre , Osso e Ossos/química , Isótopos de Carbono/análise , Dieta , Grão Comestível/química , Humanos , Hungria , Isótopos de Nitrogênio/análise
5.
Sci Rep ; 11(1): 7034, 2021 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-33782444

RESUMO

Dietary reconstruction is used to make inferences about the subsistence strategies of ancient human populations, but it may also serve as a proxy to characterise their diverse cultural and technological manifestations. Dental microwear and stable isotope analyses have been shown to be successful techniques for paleodietary reconstruction of ancient populations but, despite yielding complementary dietary information, these techniques have rarely been combined within the same study. Here we present for the first time a comprehensive approach to interpreting ancient lifeways through the results of buccal and occlusal microwear, and δ13C and δ15N isotope analyses applied to the same individuals of prehistoric populations of Hungary from the Middle Neolithic to the Late Bronze Age periods. This study aimed to (a) assess if the combination of techniques yields a more precise assessment of past dietary and subsistence practices, and (b) contribute to our understanding of the dietary patterns of the prehistoric Hungarian populations. Overall, no correlations between microwear and δ13C and δ15N isotope variables were observed, except for a relationship between nitrogen and the vertical and horizontal index. However, we found that diachronic differences are influenced by the variation within the period. Particularly, we found differences in microwear and isotope variables between Middle Neolithic sites, indicating that there were different dietary practices among those populations. Additionally, microwear results suggest no changes in the abrasiveness of the diet, neither food processing methods, despite higher C4 plant resource consumption shown by carbon isotopic signal. Thus, we demonstrate that the integration of dental microwear and carbon and nitrogen stable isotope methodologies can provide complementary information for making inferences about paleodietary habits.


Assuntos
Bochecha/patologia , Fósseis , Isótopos/análise , Dente/patologia , Isótopos de Carbono/análise , Humanos , Hungria , Dente/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA