Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Heart Fail Rev ; 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38990214

RESUMO

Cancer is the leading cause of death worldwide, and the number of cancer-related deaths is expected to increase. Common types of cancer include skin, breast, lung, prostate, and colorectal cancers. While clinical research has improved cancer therapies, these treatments often come with significant side effects such as chronic fatigue, hair loss, and nausea. In addition, cancer treatments can cause long-term cardiovascular complications. Doxorubicin (DOX) therapy is one example, which can lead to decreased left ventricle (LV) echocardiography (ECHO) parameters, increased oxidative stress in cellular level, and even cardiac fibrosis. The apelinergic system, specifically apelin and its receptor, together, has shown properties that could potentially protect the heart and mitigate the damages caused by DOX anti-cancer treatment. Studies have suggested that stimulating the apelinergic system may have therapeutic benefits for heart damage induced by DOX. Further research in chronic preclinical models is needed to confirm this hypothesis and understand the mechanism of action for the apelinergic system. This review aims to collect and present data on the effects of the apelinergic system on doxorubicin-induced cardiotoxicity.

2.
Int J Mol Sci ; 25(5)2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38473865

RESUMO

Opioid peptides and their G protein-coupled receptors are important regulators within the cardiovascular system, implicated in the modulation of both heart and vascular functions. It is known that naloxone-an opioid antagonist-may exert a hypertensive effect. Recent experimental and clinical evidence supports the important role of inflammatory mechanisms in hypertension. Since opioids may play a role in the regulation of both blood pressure and immune response, we studied these two processes in our model. We aimed to evaluate the effect of selective and non-selective opioid receptor antagonists on blood pressure and T-cell activation in a mouse model of high swim stress-induced analgesia. Blood pressure was measured before and during the infusion of opioid receptor antagonists using a non-invasive tail-cuff measurement system. To assess the activation of T-cells, flow cytometry was used. We discovered that the non-selective antagonism of the opioid system by naloxone caused a significant elevation of blood pressure. The selective antagonism of µ and κ but not δ opioid receptors significantly increased systolic blood pressure. Subsequently, a brief characterization of T-cell subsets was performed. We found that the blockade of µ and δ receptors is associated with the increased expression of CD69 on CD4 T-cells. Moreover, we observed an increase in the central memory CD4 and central memory CD8 T-cell populations after the δ opioid receptor blockade. The antagonism of the µ opioid receptor increased the CD8 effector and central memory T-cell populations.


Assuntos
Analgesia , Hipertensão , Camundongos , Animais , Antagonistas de Entorpecentes/farmacologia , Pressão Sanguínea , Receptores Opioides delta/metabolismo , Naloxona/farmacologia , Receptores Opioides mu , Dor , Analgésicos Opioides/farmacologia , Receptores Opioides kappa/metabolismo
3.
Cryobiology ; 112: 104546, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37230457

RESUMO

In the previous study, whole-body cryotherapy (WBC)+static stretching (SS) has been shown to reduce the severity of some symptoms in Chronic Fatigue Syndrome (CFS) noted just after the therapy. Here we consider the effects of treatment and explore the sustainability of symptom improvements at four weeks (one-month) follow-up. Twenty-two CFS patients were assessed one month after WBC + SS programme. Parameters related to fatigue (Chalder Fatigue Questionnaire (CFQ), Fatigue Impact Scale (FIS), Fatigue Severity Scale (FSS)), cognitive function (Trial Making test part A and B (TMT A and TMT B and its difference (TMT B-A)), Coding) hemodynamic, aortic stiffness (aortic systolic blood pressure (sBP aortic)) and autonomic nervous system functioning were measured. TMT A, TMT B, TMT B-A and Coding improved at one month after the WBC + SS programme. WBC + SS had a significant effect on the increase in sympathetic nervous system activity in rest. WBC + SS had a significant, positive chronotropic effect on the cardiac muscle. Peripheral and aortic systolic blood pressure decreased one month after WBC + SS in comparison to before. Effects of WBC + SS on reduction of fatigue, indicators of aortic stiffness and symptoms severity related to autonomic nervous system disturbance and improvement in cognitive function were maintained at one month. However, improvement in all three fatigue scales (CFQ, FIS and FSS) was noted in 17 of 22 patients. In addition, ten patients were treated initially but they were not assessed at 4 weeks, and are thus not included in the 22 patients who were examined on follow-up. The overall effects of WBC + SS noted at one month post-treatment should be interpreted with caution.


Assuntos
Síndrome de Fadiga Crônica , Exercícios de Alongamento Muscular , Humanos , Crioterapia , Síndrome de Fadiga Crônica/terapia , Inquéritos e Questionários
4.
J Transl Med ; 20(1): 273, 2022 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-35715857

RESUMO

BACKGROUND: The aim of this study was to explore the tolerability and effect of static stretching (SS) and whole body cryotherapy (WBC) upon fatigue, daytime sleepiness, cognitive functioning and objective and subjective autonomic nervous system functioning in those with Chronic Fatigue Syndrome (CFS) compared to a control population. METHODS: Thirty-two CFS and eighteen healthy controls (HC) participated in 2 weeks of a SS + WBC programme. This programme was composed of five sessions per week, 10 sessions in total. RESULTS: A significant decrease in fatigue was noted in the CFS group in response to SS + WBC. Some domains of cognitive functioning (speed of processing visual information and set-shifting) also improved in response to SS + WBC in both CFS and HC groups. Our study has confirmed that WBC is well tolerated by those with CFS and leads to symptomatic improvements associated with changes in cardiovascular and autonomic function. CONCLUSIONS: Given the preliminary data showing the beneficial effect of cryotherapy, its relative ease of application, good tolerability, and proven safety, therapy with cold exposure appears to be an approach worth attention. Further studies of cryotherapy as a potential treatment in CFS is important in the light of the lack of effective therapeutic options for these common and often disabling symptoms.


Assuntos
Síndrome de Fadiga Crônica , Exercícios de Alongamento Muscular , Sistema Nervoso Autônomo , Crioterapia , Síndrome de Fadiga Crônica/diagnóstico , Frequência Cardíaca/fisiologia , Humanos
5.
Heart Fail Rev ; 27(1): 295-319, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-32472524

RESUMO

Few millions of new cancer cases are diagnosed worldwide every year. Due to significant progress in understanding cancer biology and developing new therapies, the mortality rates are decreasing with many of patients that can be completely cured. However, vast majority of them require chemotherapy which comes with high medical costs in terms of adverse events, of which cardiotoxicity is one of the most serious and challenging. Anthracyclines (doxorubicin, epirubicin) are a class of cytotoxic agents used in treatment of breast cancer, sarcomas, or hematological malignancies that are associated with high risk of cardiotoxicity that is observed in even up to 30% of patients and can be diagnosed years after the therapy. The mechanism, in which anthracyclines cause cardiotoxicity are not well known, but it is proposed that dysregulation of renin-angiotensin-aldosterone system (RAAS), one of main humoral regulators of cardiovascular system, may play a significant role. There is increasing evidence that drugs targeting this system can be effective in the prevention and treatment of anthracycline-induced cardiotoxicity what has recently found reflection in the recommendation of some scientific societies. In this review, we comprehensively describe possible mechanisms how anthracyclines affect RAAS and lead to cardiotoxicity. Moreover, we critically review available preclinical and clinical data on use of RAAS inhibitors in the primary and secondary prevention and treatment of cardiac adverse events associated with anthracycline-based chemotherapy.


Assuntos
Antraciclinas , Cardiotoxicidade , Antraciclinas/efeitos adversos , Antibióticos Antineoplásicos/efeitos adversos , Doxorrubicina/uso terapêutico , Humanos , Sistema Renina-Angiotensina
6.
Med Sci Monit ; 28: e935135, 2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-35046380

RESUMO

The number of patients with arterial hypertension is continually increasing. Hypertension can cause organ complications, called hypertension-mediated organ damage (HMOD). One example is hypertensive retinopathy, in which high blood pressure (BP) damages both the retinal microcirculation and the retinal nerve fiber layer (RNFL). This can result in progressive and painless vision deterioration in some groups of patients. Unlike anywhere else in the human body, the microvasculature of the retina can be observed in vivo, and the progression of changes can be closely monitored. The harmful effect of increased BP on the eye is not only limited to hypertensive retinopathy, but can also lead to an exacerbation of diabetic retinopathy (DR) and to an increase in intraocular pressure (IOP), and it can also trigger the formation of thromboembolic lesions. This review presents an update on the pathogenesis of hypertensive retinopathy and the use of adaptive optics (AO) combined with optical coherence tomography (OCT) to evaluate the retinal microvasculature. The latest progress and directions of research in the field of hypertensive retinopathy are also discussed.


Assuntos
Retinopatia Hipertensiva/diagnóstico por imagem , Retinopatia Hipertensiva/patologia , Tomografia de Coerência Óptica/métodos , Inibidores da Enzima Conversora de Angiotensina/uso terapêutico , Anti-Hipertensivos/uso terapêutico , Humanos , Hipertensão/diagnóstico , Hipertensão/tratamento farmacológico , Hipertensão/patologia , Retinopatia Hipertensiva/tratamento farmacológico
7.
Med Sci Monit ; 28: e938112, 2022 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-36523134

RESUMO

Apelin and ELABELA (ELA), which are peptides belonging to the adipokines group, are endogenous peptide ligands of their receptor, APJ, which together constitute the apelinergic system. The apelinergic system is expressed in numerous human tissues and organs, including the heart, blood vessels, adipose tissue, central nervous system, lungs, kidneys, and liver. Apelin, being the most widely studied member of the apelinergic system, plays a key role in the cardiovascular system and exerts a pleiotropic effect in tissues. Under physiological conditions, the peripheral actions of apelin include augmented cardiac contractility, increased left ventricular stroke volume, vasodilation, increased diuresis, and lowered systemic blood pressure. Multiple studies suggest that activation of the apelinergic system exerts beneficial effects on the treatment of cardiovascular diseases (CVD), including hypertension and heart failure, whereas the silencing of the apelin/APJ axis results in attenuation of inflammatory processes and prevents formation of atherosclerotic plaques. As numerous effects of apelin are not entirely explained, further studies of the cardiovascular actions of apelin and ELA are necessary to help establish effective pharmacological treatments of CVDs. This article aims to review the roles of apelin and elabela peptide ligands in cardiovascular diseases, including heart failure and hypertension.


Assuntos
Doenças Cardiovasculares , Insuficiência Cardíaca , Hipertensão , Humanos , Apelina/uso terapêutico , Receptores de Apelina/uso terapêutico , Doenças Cardiovasculares/tratamento farmacológico , Hipertensão/tratamento farmacológico , Ligantes
8.
Int J Mol Sci ; 23(8)2022 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-35457013

RESUMO

Obesity is a growing epidemiological problem, as two-thirds of the adult population are carrying excess weight. It is a risk factor for the development of cardiovascular diseases (hypertension, ischemic heart disease, myocardial infarct, and atrial fibrillation). It has also been shown that chronic obesity in people may be a cause for the development of heart failure with preserved ejection fraction (HFpEF), whose components include cellular hypertrophy, left ventricular diastolic dysfunction, and increased extracellular collagen deposition. Several animal models with induced obesity, via the administration of a high-fat diet, also developed increased heart fibrosis as a result of extracellular collagen accumulation. Excessive collagen deposition in the extracellular matrix (ECM) in the course of obesity may increase the stiffness of the myocardium and thereby deteriorate the heart diastolic function and facilitate the occurrence of HFpEF. In this review, we include a rationale for that process, including a discussion about possible putative factors (such as increased renin-angiotensin-aldosterone activity, sympathetic overdrive, hemodynamic alterations, hypoadiponectinemia, hyperleptinemia, and concomitant heart diseases). To address the topic clearly, we include a description of the fundamentals of ECM turnover, as well as a summary of studies assessing collagen deposition in obese individuals.


Assuntos
Insuficiência Cardíaca , Animais , Colágeno , Matriz Extracelular/patologia , Fibrose , Humanos , Miocárdio/patologia , Obesidade/complicações , Obesidade/patologia , Volume Sistólico , Remodelação Ventricular/fisiologia
9.
Int J Mol Sci ; 23(19)2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36232889

RESUMO

The search for new materials for bone regenerative purposes is still ongoing. Therefore, we present a series of newly constructed composites based on ß tricalcium phosphate (ßTCP) and poly(3-hydroxybutyrate) bacteria-derived biopolymer (P(3HB)) in the form of 3D scaffolds with different pore sizes. To improve the polymer attachment to the ßTCP surface, the etching of ceramic sinters, using citric acid, was applied. As expected, pre-treatment led to the increase in surface roughness and the creation of micropores facilitating polymer adhesion. In this way, the durability and compressive strength of the ceramic-polymer scaffolds were enhanced. It was confirmed that P(3HB) degrades to 3-hydroxybutyric acid, which broadens applications of developed materials in bone tissue engineering as this compound can potentially nourish surrounding tissues and reduce osteoporosis. Moreover, to the best of our knowledge, it is one of the first studies where the impact of ßTCP/P(3HB) scaffolds on mesenchymal stem cells (MSCs), cultured in lowered (5%) oxygen concentration, was assessed. It was decided to use a 5% oxygen concentration in the culture to mimic the conditions that would be found in damaged bone in a living organism during regeneration. Scaffolds enabled cell migration and sufficient flow of the culture medium, ensuring high cell viability. Furthermore, in composites with etched ßTCP, the MSCs adhesion was facilitated by hydrophilic ceramic protrusions which reduced hydrophobicity. The developed materials are potential candidates for bone tissue regeneration. Nevertheless, to confirm this hypothesis, in vivo studies should be performed.


Assuntos
Fosfatos de Cálcio , Engenharia Tecidual , Ácido 3-Hidroxibutírico , Fosfatos de Cálcio/química , Fosfatos de Cálcio/farmacologia , Ácido Cítrico , Oxigênio , Polímeros , Alicerces Teciduais/química
10.
Int J Mol Sci ; 23(24)2022 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-36555799

RESUMO

The human body's natural protective barrier, the skin, is exposed daily to minor or major mechanical trauma, which can compromise its integrity. Therefore, the search for new dressing materials that can offer new functionalisation is fully justified. In this work, the development of two new types of dressings based on poly(3-hydroxyoctanoate) (P(3HO)) is presented. One of the groups was supplemented with conjugates of an anti-inflammatory substance (diclofenac) that was covalently linked to oligomers of hydroxycarboxylic acids (Oli-dicP(3HO)). The novel dressings were prepared using the solvent casting/particulate leaching technique. To our knowledge, this is the first paper in which P(3HO)-based dressings were used in mice wound treatment. The results of our research confirm that dressings based on P(3HO) are safe, do not induce an inflammatory response, reduce the expression of pro-inflammatory cytokines, provide adequate wound moisture, support angiogenesis, and, thanks to their hydrophobic characteristics, provide an ideal protective barrier. Newly designed dressings containing Oli-dicP(3HO) can promote tissue regeneration by partially reducing the inflammation at the injury site. To conclude, the presented materials might be potential candidates as excellent dressings for wound treatment.


Assuntos
Implantes Absorvíveis , Cicatrização , Camundongos , Humanos , Animais , Bandagens , Caprilatos
11.
Curr Hypertens Rep ; 23(5): 31, 2021 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-34014393

RESUMO

PURPOSE OF REVIEW: Based on the available data, it can be assumed that microbiota is an integral part of the human body. The most heavily colonized area of the human body is the gut, with bacterial accumulation ranging from 101-103 cells/g in the upper intestine to 1011-1012 cells/g in the colon. However, colonization of the gut is not the same throughout, as it was shown that there are differences between the composition of the microbiota in the intestine lumen and in the proximity of the mucus layer. RECENT FINDINGS: Gut microbiota gradient can be differentially regulated by factors such as obesity and chronic stress. In particular, a high fat diet influences the gut microbial composition. It was also found that chronic stress may cause the development of obesity and thus change the organization of the intestinal barrier. Recent research has shown the significant effect of intestinal microflora on cardiovascular function. Enhanced absorption of bacterial fragments, such as lipopolysaccharide (LPS), promotes the onset of "metabolic endotoxemia," which could activate toll-like receptors, which mediates an inflammatory response and in severe cases could cause cardiovascular diseases. It is presumed that the intestinal microbiota, and especially its metabolites (LPS and trimethylamine N-oxide (TMAO)), may play an important role in the pathogenesis of arterial hypertension, atherosclerosis, and heart failure. This review focuses on how gut microbiota can change the morphological and functional activity of the cardiovascular system in the course of obesity and in conditions of chronic stress.


Assuntos
Sistema Cardiovascular , Microbioma Gastrointestinal , Hipertensão , Dieta Hiperlipídica , Humanos , Obesidade
12.
Ophthalmic Res ; 64(3): 345-355, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33454713

RESUMO

Retinal ganglion cells (RGCs) play a crucial role in the visual pathway. As their axons form the optic nerve, apoptosis of these cells causes neurodegenerative vision loss. RGC death could be triggered by increased intraocular pressure, advanced glycation end products, or mitochondrial dysfunction. In this review, we summarize the role of some neuroprotective factors in RGC injury: ciliary neurotrophic factor (CNTF), nerve growth factor (NGF), brain-derived neurotrophic factor, vascular endothelial growth factor, pigment epithelium-derived factor, glial cell line-derived neurotrophic factor, and Norrin. Each, in their own unique way, prevents RGC damage caused by glaucoma, ocular hypertension, ischemic neuropathy, and even oxygen-induced retinopathy. These factors are produced mainly by neurons, leukocytes, glial cells, and epithelial cells. Neuroprotective factors act via various signaling pathways, including JAK/STAT, MAPK, TrkA, and TrkB, which promotes RGC survival. Many attempts have been made to develop therapeutic strategies using these factors. There are ongoing clinical trials with CNTF and NGF, but they have not yet been accepted for clinical use.


Assuntos
Glaucoma , Células Ganglionares da Retina , Sobrevivência Celular , Fator Neurotrófico Ciliar , Humanos , Fator de Crescimento Neural , Retina , Fator A de Crescimento do Endotélio Vascular
13.
Int J Mol Sci ; 22(7)2021 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-33805303

RESUMO

Atherosclerotic plaque is the pathophysiological basis of important and life-threatening diseases such as myocardial infarction. Although key aspects of the process of atherosclerotic plaque development and progression such as local inflammation, LDL oxidation, macrophage activation, and necrotic core formation have already been discovered, many molecular mechanisms affecting this process are still to be revealed. This minireview aims to describe the current directions in research on atherogenesis and to summarize selected studies published in recent years-in particular, studies on novel cellular pathways, epigenetic regulations, the influence of hemodynamic parameters, as well as tissue and microorganism (microbiome) influence on atherosclerotic plaque development. Finally, some new and interesting ideas are proposed (immune cellular heterogeneity, non-coding RNAs, and immunometabolism) which will hopefully bring new discoveries in this area of investigation.


Assuntos
Aterosclerose/fisiopatologia , Placa Aterosclerótica/fisiopatologia , Animais , Aterosclerose/genética , Aterosclerose/metabolismo , Epigênese Genética , Humanos , Inflamação , Lipoproteínas LDL , Ativação de Macrófagos , Placa Aterosclerótica/genética , Placa Aterosclerótica/metabolismo
14.
Int J Mol Sci ; 22(9)2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33919446

RESUMO

Atherosclerotic plaque vulnerability is a vital clinical problem as vulnerable plaques tend to rupture, which results in atherosclerosis complications-myocardial infarctions and subsequent cardiovascular deaths. Therefore, methods aiming to stabilize such plaques are in great demand. In this brief review, the idea of atherosclerotic plaque stabilization and five main approaches-towards the regulation of metabolism, macrophages and cellular death, inflammation, reactive oxygen species, and extracellular matrix remodeling have been presented. Moreover, apart from classical approaches (targeted at the general mechanisms of plaque destabilization), there are also alternative approaches targeted either at certain plaques which have just become vulnerable or targeted at the minimization of the consequences of atherosclerotic plaque erosion or rupture. These alternative approaches have also been briefly mentioned in this review.


Assuntos
Aterosclerose/patologia , Matriz Extracelular/patologia , Inflamação/patologia , Macrófagos/patologia , Placa Aterosclerótica/patologia , Animais , Aterosclerose/etiologia , Aterosclerose/terapia , Humanos , Inflamação/complicações , Placa Aterosclerótica/etiologia , Placa Aterosclerótica/terapia
15.
Int J Mol Sci ; 22(21)2021 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-34768894

RESUMO

The neurons secreting oxytocin (OXY) and vasopressin (AVP) are located mainly in the supraoptic, paraventricular, and suprachiasmatic nucleus of the brain. Oxytocinergic and vasopressinergic projections reach several regions of the brain and the spinal cord. Both peptides are released from axons, soma, and dendrites and modulate the excitability of other neuroregulatory pathways. The synthesis and action of OXY and AVP in the peripheral organs (eye, heart, gastrointestinal system) is being investigated. The secretion of OXY and AVP is influenced by changes in body fluid osmolality, blood volume, blood pressure, hypoxia, and stress. Vasopressin interacts with three subtypes of receptors: V1aR, V1bR, and V2R whereas oxytocin activates its own OXTR and V1aR receptors. AVP and OXY receptors are present in several regions of the brain (cortex, hypothalamus, pons, medulla, and cerebellum) and in the peripheral organs (heart, lungs, carotid bodies, kidneys, adrenal glands, pancreas, gastrointestinal tract, ovaries, uterus, thymus). Hypertension, myocardial infarction, and coexisting factors, such as pain and stress, have a significant impact on the secretion of oxytocin and vasopressin and on the expression of their receptors. The inappropriate regulation of oxytocin and vasopressin secretion during ischemia, hypoxia/hypercapnia, inflammation, pain, and stress may play a significant role in the pathogenesis of cardiovascular diseases.


Assuntos
Anormalidades Cardiovasculares , Ocitocina/metabolismo , Vasopressinas/metabolismo , Axônios/metabolismo , Encéfalo/metabolismo , Anormalidades Cardiovasculares/etiologia , Anormalidades Cardiovasculares/metabolismo , Sistema Cardiovascular/metabolismo , Humanos , Hipertensão/etiologia , Hipertensão/metabolismo , Pulmão/metabolismo , Infarto do Miocárdio/etiologia , Infarto do Miocárdio/metabolismo , Neurônios/metabolismo , Neurofisinas/metabolismo , Precursores de Proteínas/metabolismo , Receptores de Ocitocina/metabolismo
16.
Int J Mol Sci ; 22(11)2021 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-34071976

RESUMO

Myocardial infarction is one of the major causes of mortality worldwide and is a main cause of heart failure. This disease appears as a final point of atherosclerotic plaque progression, destabilization, and rupture. As a consequence of cardiomyocytes death during the infarction, the heart undergoes unfavorable cardiac remodeling, which results in its failure. Therefore, therapies aimed to limit the processes of atherosclerotic plaque progression, cardiac damage during the infarction, and subsequent remodeling are urgently warranted. A hopeful therapeutic option for the future medicine is targeting and regulating non-coding RNA (ncRNA), like microRNA, circular RNA (circRNA), or long non-coding RNA (lncRNA). In this review, the approaches targeted at ncRNAs participating in the aforementioned pathophysiological processes involved in myocardial infarction and their outcomes in preclinical studies have been concisely presented.


Assuntos
Infarto do Miocárdio/genética , Infarto do Miocárdio/patologia , RNA não Traduzido/genética , Remodelação Ventricular/genética , Animais , Biomarcadores , Gerenciamento Clínico , Progressão da Doença , Suscetibilidade a Doenças , Avaliação Pré-Clínica de Medicamentos , Terapia Genética , Humanos , Terapia de Alvo Molecular , Infarto do Miocárdio/terapia , Miócitos Cardíacos/metabolismo , Placa Aterosclerótica/etiologia , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/patologia , Placa Aterosclerótica/terapia
17.
Biomarkers ; 25(6): 449-457, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32693619

RESUMO

Assessment of the plasma concentrations of natriuretic peptides (NPs) is widely used to diagnose and evaluate the progression of cardiac failure, and their potential as markers of preeclampsia (PE) has been examined in recent years. It has been established that plasma concentrations of NPs do not change in the course of normal pregnancy. However, elevated levels of these peptides may have a prognostic value in patients with PE. This study presents information about the relevance of NPs assessment in the evaluation of physiological pregnancy, as well as in pregnancy complicated with arterial hypertension. The most commonly examined NPs is the N-terminal fragment of the brain natriuretic peptide (NT-proBNP), and it may be prognostic marker of PE and other complications of pregnancy.


Assuntos
Biomarcadores/sangue , Hipertensão/sangue , Peptídeo Natriurético Encefálico/sangue , Complicações Cardiovasculares na Gravidez/sangue , Adulto , Feminino , Idade Gestacional , Humanos , Hipertensão/patologia , Gravidez , Complicações Cardiovasculares na Gravidez/patologia , Gestantes
18.
Clin Exp Pharmacol Physiol ; 47(12): 1902-1911, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32687615

RESUMO

A high-fat diet can affect the central activity of the apelinergic and vasopressinergic systems, which can have a significant impact on cardiovascular regulation. The aim of the study was to investigate the role of the central interaction between apelin and vasopressin in the regulation of the cardiovascular system in Sprague Dawley rats maintained on a normal-fat diet (NFD) or on a high-fat diet (HFD). The animals were instrumented with a cannula implanted into the left cerebral ventricle for intracerebroventricular (ICV) infusions of saline (0.9% NaCl), apelin-13 (APLN-13), V1a receptor antagonist (V1aRANT) APJ receptor antagonist (F13A), vasopressin (AVP); and with a catheter placed within the femoral artery for mean arterial blood pressure and heart rate monitoring. Blood, the hypothalamus and the medulla oblongata were collected for biochemical analysis. The hypertensive effect of APLN-13 was blocked by a prior ICV infusion of V1aRANT, only in the NFD rats. However, the hypertensive effect of AVP was blocked by the prior ICV infusion of F13A in both the NFD and HFD rats. A HFD caused an increase in the protein level of APJ and V1a receptors, both in the hypothalamus and the medulla oblongata. This study confirms the presence of an interaction between both peptides in the central regulation of the cardiovascular system in rats on a NFD or a HFD.


Assuntos
Receptores de Apelina , Dieta Hiperlipídica , Hemodinâmica , Vasopressinas , Animais , Masculino , Bulbo/metabolismo , Ratos , Ratos Sprague-Dawley
19.
Med Sci Monit ; 26: e926825, 2020 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-33048914

RESUMO

BACKGROUND Orexin A (OXA) and vasopressin (AVP) exert a central hypertensive effect due to an increase in sympathetic nerve activity. To date, little is known about the interaction of these 2 neuropeptides in the central regulation of blood pressure. The present study compared the consequences of infusion into the left cerebral ventricle (ICV) of OXA on mean arterial blood pressure (MABP) in normotensive (WKY) and spontaneously hypertensive (SHR) rats, and explored whether the central pressor action of OXA in these 2 strains depends on activation of brain AVP V1a receptors (V1aR). MATERIAL AND METHODS Ten groups of experiments were performed on 12-week-old WKY and SHR rats implanted with ICV cannulas for infusion of OXA (3 nmol) and V1aR antagonist (V1aRANT, 500 ng), administered separately and together. Levels of V1aR and OXR in the medulla oblongata of WKY and SHR rats were compared in separate series. RESULTS We found that: 1) OXA significantly increased MABP only in WKY rats, 2) V1aRANT prevented an increase in MABP induced by OXA in WKY rats and decreased MABP in SHR rats, 3) OXA abolished the hypotensive action of V1aRANT in SHR rats, and 4) SHR rats had significantly higher levels of OX1R and V1aR proteins and OX1R mRNA in the brain medulla. CONCLUSIONS The present study shows that OXA and AVP can interact in the brain to affect blood pressure regulation, and that this interaction differs in normotension and hypertension.


Assuntos
Pressão Sanguínea , Encéfalo/metabolismo , Orexinas/metabolismo , Sistema Nervoso Simpático/metabolismo , Vasopressinas/metabolismo , Animais , Masculino , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Especificidade da Espécie
20.
Histochem Cell Biol ; 152(5): 345-353, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31486923

RESUMO

The objective of this study is to evaluate MMP-14 expression in odontoblasts and in the bulk of dental pulp of teeth with pulpitis; to determine the expression of microRNA-410 (miR-410) in pulp tissue, since sequence analysis suggests that miR-410 has potential binding site on MMP-14's 3'UTR, and hence, can regulate expression of the latter one. Tissue samples of dental pulp from teeth with pulpitis and healthy (control) were formalin fixed and paraffin embedded (FFPE). Samples were examined using immunohistochemical staining for MMP-14 and the expression of miR-410 was evaluated using qRT-PCR. In both, healthy and inflamed pulp odontoblasts stained more intensively than remaining pulp tissue, but this difference was not statistically significant. More positive staining was observed in inflamed pulps compared to healthy pulps. Expression of miR-410 was found significantly lower in inflamed pulps than in healthy ones. In the two examined zones, odontoblasts and remaining pulp, miR-410 was expressed on a similar level. No statistically significant correlation of miR-410 and MMP-14 expression was found. We showed that inflammation changes the MMP-14 expression in pulp tissue and odontoblasts. This study demonstrates for the first time miR-410 expression in human dental pulp and that expression of this microRNA was downregulated in inflamed dental pulp and odontoblasts.


Assuntos
Polpa Dentária/metabolismo , Inflamação/genética , Metaloproteinase 14 da Matriz/genética , MicroRNAs/genética , Odontoblastos/metabolismo , Polpa Dentária/patologia , Humanos , Inflamação/metabolismo , Metaloproteinase 14 da Matriz/análise , Metaloproteinase 14 da Matriz/metabolismo , MicroRNAs/análise , Odontoblastos/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA