Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biomolecules ; 14(5)2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38785965

RESUMO

Circadian rhythms integrate a finely tuned network of biological processes recurring every 24 h, intricately coordinating the machinery of all cells. This self-regulating system plays a pivotal role in synchronizing physiological and behavioral responses, ensuring an adaptive metabolism within the environmental milieu, including dietary and physical activity habits. The systemic integration of circadian homeostasis involves a balance of biological rhythms, each synchronically linked to the central circadian clock. Central to this orchestration is the temporal dimension of nutrient and food intake, an aspect closely interwoven with the neuroendocrine circuit, gut physiology, and resident microbiota. Indeed, the timing of meals exerts a profound influence on cell cycle regulation through genomic and epigenetic processes, particularly those involving gene expression, DNA methylation and repair, and non-coding RNA activity. These (epi)genomic interactions involve a dynamic interface between circadian rhythms, nutrition, and the gut microbiota, shaping the metabolic and immune landscape of the host. This research endeavors to illustrate the intricate (epi)genetic interplay that modulates the synchronization of circadian rhythms, nutritional signaling, and the gut microbiota, unravelling the repercussions on metabolic health while suggesting the potential benefits of feed circadian realignment as a non-invasive therapeutic strategy for systemic metabolic modulation via gut microbiota. This exploration delves into the interconnections that underscore the significance of temporal eating patterns, offering insights regarding circadian rhythms, gut microbiota, and chrono-nutrition interactions with (epi)genomic phenomena, thereby influencing diverse aspects of metabolic, well-being, and quality of life outcomes.


Assuntos
Ritmo Circadiano , Epigenômica , Microbioma Gastrointestinal , Humanos , Ritmo Circadiano/genética , Ritmo Circadiano/fisiologia , Animais , Epigênese Genética , Estado Nutricional , Relógios Circadianos/genética
2.
Nutrients ; 16(11)2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38892710

RESUMO

Translational research has documented the conjoint beneficial relationships between dietary and physical activity habits concerning weight maintenance. However, the precise interplay between diet and exercise impacting body composition remains unclear, challenging personalized interventions. This study aimed to explore potential interactions and effect modifications of these factors affecting the body mass index (BMI) within an online adult cohort. Data from 11,883 NUTRiMDEA cohort participants were analyzed in this cross-sectional study, categorizing individuals by age, sex, and BMI using linear regression models to assess the interactions between lifestyle factors and adiposity. Significant differences emerged in anthropometry, lifestyle, and health-related quality of life (HRQoL) across categories. The combined effect of diet and physical activity had a greater impact on BMI than physical activity or Mediterranean diet adherence alone, with lower BMI as physical activity levels increased (ß: -0.5) and adherence to the Mediterranean diet decreased, where a modification effect between them was identified (ß: -0.28). Participants with lower Mediterranean diet adherence displayed superior BMI when physical activity was low, but when activity levels were higher, their BMI aligned with those with healthier dietary habits. An interaction link between lifestyle factors and BMI was found, showing the differential effects of the Mediterranean diet and physical activity combination concerning adiposity.


Assuntos
Adiposidade , Índice de Massa Corporal , Dieta Mediterrânea , Exercício Físico , Humanos , Dieta Mediterrânea/estatística & dados numéricos , Feminino , Masculino , Adulto , Estudos Transversais , Pessoa de Meia-Idade , Qualidade de Vida , Estudos de Coortes , Estilo de Vida , Idoso
3.
iScience ; 27(8): 110450, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39081294

RESUMO

Patients with Post-viral long hauler encompass lasting symptoms and comorbid complexities, often exacerbated in individuals with excessive body weight. The aim was to study gut microbiota in 130 patients with post-viral long hauler stratified by body mass index (BMI) and the relationship between inflammation and microbiota. Significant higher values were found for anthropometric variables and markers of glucose and dyslipidemia in individuals with higher BMI, as well as elevated levels of C-reactive protein, fibrinogen, IL-6, uric acid, and D-dimer. An interactive association showed an interplay between Faecalibacterium, D-dimer levels, and insulin resistance. This investigation showed that anthropometric, biochemical, and inflammatory variables were impaired in patients with post-viral long haulers with higher BMI. In addition, gut microbiota differences were found between groups and a modification effect on Faecalibacterium abundance regarding insulin resistance and D-dimer. These findings suggest that considering adiposity and gut microbiota structure and composition may improve personalized clinical interventions in patients with chronic inflammation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA