Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Chemistry ; 30(11): e202303004, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38189555

RESUMO

Due to the high surface area and uniform porosity of covalent organic frameworks (COFs), they exhibit superior properties in capturing and detecting even trace amounts of gases in the air. However, the COFs materials that possess dual detected functionality are still less reported. Here, an imine-based COF containing thiophene as a donor and triazine as an acceptor to form spatial-distribution-defined D-A structures was prepared. D-A system between thiophene and triazine facilitates the charge transfer process during the protonation process of the imine and the triazine units. The obtained COF exhibits simultaneous sensing ability toward both acidic and alkaline vapors with obvious colorimetric sensing functionality.

2.
Ann Hematol ; 103(3): 771-780, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38294533

RESUMO

The objective of this study was to analyze the correlation between skeletal muscle mass and the distribution of peripheral blood lymphocytes and natural killer (NK) cells, as well as their impact on prognosis in patients with acute myeloid leukemia (AML). A retrospective analysis was conducted on 211 newly diagnosed AML patients, evaluating skeletal muscle index (SMI), NK cell proportion, and absolute value, along with relevant clinical data. Linear regression and Spearman's correlation coefficient were used to assess the relationship between various indicators and SMI, followed by multiple linear regression for further modeling. Univariate and multivariate Cox proportional hazards regression models were used to identify independent predictors for overall survival (OS). Among the 211 AML patients, 38 cases (18.0%) were diagnosed with sarcopenia. Multiple linear regression analysis included weight, fat mass, ECOG score, body mass index, and peripheral blood NK cell proportion, constructing a correlation model for SMI (R2 = 0.745). Univariate analysis identified higher NK cell count (> 9.53 × 106/L) as a poor predictor for OS. Multivariate Cox proportional hazards regression model indicated that age ≥ 60 years, PLT < 100 × 109/L, ELN high risk, sarcopenia, and B cell count > 94.6 × 106/L were independent adverse prognostic factors for AML patients. Low skeletal muscle mass may negatively impact the count and function of NK cells, thereby affecting the prognosis of AML. However, further basic and clinical research is needed to explore the specific mechanisms underlying the relationship between NK cells and SMI in AML.


Assuntos
Leucemia Mieloide Aguda , Sarcopenia , Humanos , Pessoa de Meia-Idade , Sarcopenia/patologia , Estudos Retrospectivos , Prognóstico , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/patologia , Músculo Esquelético , Células Matadoras Naturais
3.
BMC Biol ; 20(1): 200, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-36100845

RESUMO

BACKGROUND: Interspecific postzygotic reproduction isolation results from large genetic divergence between the subgenomes of established hybrids. Polyploidization immediately after hybridization may reset patterns of homologous chromosome pairing and ameliorate deleterious genomic incompatibility between the subgenomes of distinct parental species in plants and animals. However, the observation that polyploidy is less common in vertebrates raises the question of which factors restrict its emergence. Here, we perform analyses of the genome, epigenome, and gene expression in the nascent allotetraploid lineage (2.95 Gb) derived from the intergeneric hybridization of female goldfish (Carassius auratus, 1.49 Gb) and male common carp (Cyprinus carpio, 1.42 Gb), to shed light on the changes leading to the stabilization of hybrids. RESULTS: We firstly identify the two subgenomes derived from the parental lineages of goldfish and common carp. We find variable unequal homoeologous recombination in somatic and germ cells of the intergeneric F1 and allotetraploid (F22 and F24) populations, reflecting high plasticity between the subgenomes, and rapidly varying copy numbers between the homoeolog genes. We also find dynamic changes in transposable elements accompanied by genome merger and duplication in the allotetraploid lineage. Finally, we observe the gradual decreases in cis-regulatory effects and increases in trans-regulatory effects along with the allotetraploidization, which contribute to increases in the symmetrical homoeologous expression in different tissues and developmental stages, especially in early embryogenesis. CONCLUSIONS: Our results reveal a series of changes in transposable elements, unequal homoeologous recombination, cis- and trans-regulations (e.g. DNA methylation), and homoeologous expression, suggesting their potential roles in mediating adaptive stabilization of regulatory systems of the nascent allotetraploid lineage. The symmetrical subgenomes and homoeologous expression provide a novel way of balancing genetic incompatibilities, providing a new insight into the early stages of allopolyploidization in vertebrate evolution.


Assuntos
Carpas , Cyprinidae , Animais , Cyprinidae/genética , Elementos de DNA Transponíveis , Hibridização Genética , Poliploidia
4.
Sensors (Basel) ; 23(19)2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37837024

RESUMO

Watermarking is an excellent solution to protect multimedia privacy but will be damaged by attacks such as noise adding, image filtering, compression, and especially scaling and cutting. In this paper, we propose a watermarking scheme to embed the watermark in the DWT-DCT composite transform coefficients, which is robust against normal image processing operations and geometric attacks. To make our scheme robust to scaling operations, a resampling detection network is trained to detect the scaling factor and then rescale the scaling-attacked image before watermark detection. To make our scheme robust to cutting operations, a template watermark is embedded in the Y channel to locate the cutting position. Experiments for various low- and high-resolution images reveal that our scheme has excellent performance in terms of imperceptibility and robustness.

5.
Molecules ; 28(3)2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36771090

RESUMO

Both insect ecdysone receptors and ultraspiracle belong to the nuclear receptor family. They form a nanoscale self-assembling complex with ecdysteroids in cells, transit into the nucleus, bind with genes to initiate transcription, and perform specific biological functions to regulate the molting, metamorphosis, and growth processes of insects. Therefore, this complex is an important target for the development of eco-friendly insecticides. The diamondback moth (Plutella xylostella) is a devastating pest of cruciferous vegetable crops, wreaking havoc worldwide and causing severe economic losses, and this pest has developed resistance to most chemical insecticides. In this study, highly pure EcR and USP functional domains were obtained by constructing a prokaryotic expression system for the diamondback moth EcR and USP functional domain genes, and the differences between EcR and USP binding domain monomers and dimers were analyzed using transmission electron microscopy and zeta potential. Radioisotope experiments further confirmed that the binding affinity of PonA to the EcR/USP dimer was enhanced approximately 20-fold compared with the binding affinity to the PxGST-EcR monomer. The differences between PonA and tebufenozide in binding with EcR/USP were examined. Molecular simulations showed that the hydrogen bonding network formed by Glu307 and Arg382 on the EcR/USP dimer was a key factor in the affinity enhancement. This study provides a rapid and sensitive method for screening ecdysone agonists for ecdysone receptor studies in vitro.


Assuntos
Inseticidas , Mariposas , Receptores de Esteroides , Animais , Ecdisona , Inseticidas/farmacologia , Receptores de Esteroides/metabolismo , Mariposas/metabolismo , Insetos/metabolismo , Proteínas de Transporte
6.
Genome Res ; 29(11): 1805-1815, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31649058

RESUMO

Hybridization drives rapid speciation by shaping novel genotypic and phenotypic profiles. Genomic incompatibility and transcriptome shock have been observed in hybrids, although this is rarer in animals than in plants. Using the newly sequenced genomes of the blunt snout bream (Megalobrama amblycephala [BSB]) and the topmouth culter (Culter alburnus [TC]), we focused on the sequence variation and gene expression changes in the reciprocal intergeneric hybrid lineages (F1-F3) of BSB × TC. A genome-wide transcriptional analysis identified 145-974 expressed recombinant genes in the successive generations of hybrid fish, suggesting the rapid emergence of allelic variation following hybridization. Some gradual changes of gene expression with additive and dominance effects and various cis and trans regulations were observed from F1 to F3 in the two hybrid lineages. These asymmetric patterns of gene expression represent the alternative strategies for counteracting deleterious effects of the subgenomes and improving adaptability of novel hybrids. Furthermore, we identified positive selection and additive expression patterns in transforming growth factor, beta 1b (tgfb1b), which may account for the morphological variations of the pharyngeal jaw in the two hybrid lineages. Our current findings provide insights into the evolution of vertebrate genomes immediately following hybridization.


Assuntos
Alelos , Cyprinidae/genética , Hibridização Genética , Animais , Feminino , Masculino , Polimorfismo Genético , Análise de Sequência/métodos , Especificidade da Espécie
7.
BMC Genomics ; 21(1): 457, 2020 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-32616060

RESUMO

BACKGROUND: Maternal effects contribute to adaptive significance for shaping various phenotypes of many traits. Potential implications of maternal effects are the cause of expression diversity, but these effects on mRNA expression and alternative splicing (AS) have not been fully elucidated in hybrid animals. RESULTS: Two reciprocal cross hybrids following hybridization of Megalobrama amblycephala (blunt snout bream, BSB) and Culter alburnus (topmouth culter, TC) were used as a model to investigate maternal effects. By comparing the expression of BSB- and TC- homoeologous genes between the two reciprocal cross hybrids, we identified 49-348 differentially expressed BSB-homoeologous genes and 54-354 differentially expressed TC-homoeologous genes. 2402, 2959, and 3418 AS events between the two reciprocal cross hybrids were detected in Illumina data of muscle, liver, and gonad, respectively. Moreover, 21,577 (TC-homoeologs) and 30,007 (BSB-homoeologs) AS events were found in the 20,131 homoeologous gene pairs of TBF3 based on PacBio data, while 30,561 (TC-homoeologs) and 30,305 (BSB-homoeologs) AS events were found in BTF3. These results further improve AS prediction at the homoeolog level. The various AS patterns in bmpr2a belonging to the bone morphogenetic protein family were selected as AS models to investigate the expression diversity and its potential effects to body shape traits. CONCLUSIONS: The distribution of differentially expressed genes and AS in BSB- and TC-subgenomes exhibited various changes between the two reciprocal cross hybrids, suggesting that maternal effects were the cause of expression diversity. These findings provide a novel insight into mRNA expression changes and AS under maternal effects in lower vertebrates.


Assuntos
Processamento Alternativo , Cipriniformes/genética , Herança Materna , Alelos , Animais , Proteínas Morfogenéticas Ósseas/genética , Proteínas Morfogenéticas Ósseas/metabolismo , Quimera , Cruzamentos Genéticos , Cipriniformes/metabolismo , Ontologia Genética , Genoma , Transcriptoma
8.
Bioorg Med Chem Lett ; 30(21): 127500, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32822762

RESUMO

Insect growth regulators (IGRs), which can interrupt or inhibit pest life cycles, are low-toxicity pesticides widely used in integrated pest management (IPM). Ecdysone analogues and chitinase inhibitors are familiar IGRs that have attracted considerable attention because of their unique modes of action and low toxicity to non-target organisms. To find new and highly effective candidate IGRs with novel mechanisms, D-08 (N-(4-(tert-butyl)phenyl)-2-phenyl-2,4,5,6,7,8-hexahydrocyclohepta[c]pyrazole-5-carboxamide) was chosen as a lead compound, and a series of novel heptacyclic pyrazolamide derivatives were designed and synthesized using the scaffold hopping strategy. The bioassay showed that III-27 (N-(2-methylphenethyl)-1-phenyl-1,4,5,6,7,8-hexahydrocyclohepta[c]pyrazole-5-carboxamide) had excellent activity against Plutella xylostella. Protein verification and molecular docking indicated that III-27 could act on both the ecdysone receptor (EcR) and Ostrinia furnacalis chitinase (Of ChtI) and is a promising new lead IGRs. The interaction mechanism of III-27 with EcR and Of ChtI was then studied by molecular docking. These results provide important guidance for the study of new dual-target IGRs.


Assuntos
Amidas/farmacologia , Descoberta de Drogas , Hormônios Juvenis/farmacologia , Mariposas/efeitos dos fármacos , Pirazóis/farmacologia , Amidas/síntese química , Amidas/química , Animais , Quitinases/metabolismo , Relação Dose-Resposta a Droga , Hormônios Juvenis/síntese química , Hormônios Juvenis/química , Simulação de Acoplamento Molecular , Estrutura Molecular , Pirazóis/síntese química , Pirazóis/química , Receptores de Esteroides/metabolismo , Relação Estrutura-Atividade
9.
Reprod Fertil Dev ; 31(2): 248-260, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30086823

RESUMO

Spermatogenesis involves a series of cellular transformations and thousands of regulated genes. Previously, we showed that the triploid fish (3nBY) cannot produce mature spermatozoa. In the present study, evaluation of the testis microstructure revealed that germ cells of 3nBY could develop into round spermatids, but then degenerated, resulting in male infertility. In this study we comparatively analysed the testis transcriptomes from 3nBY and its diploid parent YB and identified a series of differentially expressed genes (DEGs) that were enriched in the Wnt signalling pathway and the apoptotic and ubiquitin-mediated proteolysis processes in 3nBY. Gene ontology functional analyses revealed that some DEGs in 3nBY were directly associated with the process of gamete generation, development and sperm flagellum assembly. In addition, the expression of a number of genes related to meiosis (Inhibitor Of DNA Binding 2 (ID2), Ovo Like Transcriptional Repressor 1 (OVOL1)), mitochondria (ATP1b (ATPase Na+/K+ Transporting Subunit Beta 1), ATP2a (ATPase, Ca++ Transporting, Cardiac Muscle, Slow Twitch 2), ATP5a (ATP Synthase F1 Subunit Alpha), Mitochondrially Encoded Cytochrome C Oxidase I (COX1), NADH Dehydrogenase Subunit 4 (ND4)) and chromatin structure (Histone 1 (H1), Histone 2a (H2A), Histone 2b (H2B), Histone 3 (H3), Histone 4 (H4)) was lower in the testes of 3nBY, whereas the expression of genes encoding ubiquitin (Ubiquitin Conjugating Enzymes (UBEs), Ring Finger Proteins (RNFs)) and apoptosis (CASPs (Caspase 3, Caspase 7,Caspase 8), BCLs (B-Cell Lymphoma 3, B-Cell CLL/Lymphoma 2, B Cell CLL/Lymphoma 10)) proteins involved in spermatid degeneration was higher. These data suggest that the disrupted expression of genes associated with spermatogenesis and the increased expression of mitochondrial ubiquitin, which initiates cell apoptosis, may result in spermatid degeneration in male 3nBY. This study provides information regarding the potential molecular regulatory mechanisms underlying male infertility in polyploid fish.


Assuntos
Infertilidade Masculina/metabolismo , Espermatogênese/fisiologia , Testículo/metabolismo , Transcriptoma , Triploidia , Animais , Peixes/metabolismo , Infertilidade Masculina/genética , Masculino , Meiose/genética , Transdução de Sinais/genética , Cauda do Espermatozoide/metabolismo , Espermatozoides/metabolismo
10.
BMC Genomics ; 19(1): 517, 2018 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-29969984

RESUMO

BACKGROUND: Hybridization and polyploidization are regarded as the major driving forces in plant speciation, diversification, and ecological adaptation. Our knowledge regarding the mechanisms of duplicated-gene regulation following genomic merging or doubling is primarily derived from plants and is sparse for vertebrates. RESULTS: We successfully obtained an F1 generation (including allodiploid hybrids and triploid hybrids) from female Megalobrama amblycephala Yih (BSB, 2n = 48) × male Xenocypri davidi Bleeker (YB, 2n = 48). The duplicated-gene expression patterns of the two types of hybrids were explored using RNA-Seq data. In total, 5.44 × 108 (69.32 GB) clean reads and 499,631 assembled unigenes were obtained from the testis transcriptomes. The sequence similarity analysis of 4265 orthologs revealed that the merged genomes were dominantly expressed in different ploidy hybrids. The differentially expressed genes in the two types of hybrids were asymmetric compared with those in both parents. Furthermore, the genome-wide expression level dominance (ELD) was biased toward the maternal BSB genome in both the allodiploid and triploid hybrids. In addition, the dosage-compensation mechanisms that reduced the triploid expression levels to the diploid state were determined in the triploid hybrids. CONCLUSIONS: Our results indicate that divergent genomes undergo strong interactions and domination in allopolyploid offspring. Genomic merger has a greater effect on the gene-expression patterns than genomic doubling. The various expression mechanisms (including maternal effect and dosage compensation) in different ploidy hybrids suggest that the initial genomic merger and doubling play important roles in polyploidy adaptation and evolution.


Assuntos
Quimera/genética , Cyprinidae/genética , Mecanismo Genético de Compensação de Dose/genética , Herança Materna/genética , Animais , Feminino , Masculino , Poliploidia , RNA/química , RNA/isolamento & purificação , RNA/metabolismo , Análise de Sequência de RNA , Testículo/metabolismo , Transcriptoma
11.
BMC Genomics ; 18(1): 38, 2017 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-28056785

RESUMO

BACKGROUND: Polyploidy and hybridization are both recognized as major forces in evolution. Most of our current knowledge about differences in gene regulation in polyploid hybrids comes from plant studies. The gene expression of diverged genomes and regulatory interactions are still unclear in lower vertebrates. RESULTS: We generated 229 million cleaned reads (42.23 Gbp) from triploid of maternal grass carp (Ctenopharyngodon idellus, Cyprininae, 2n = 48) × paternal blunt snout bream (Megalobrama amblycephala, Cultrinae, 2n = 48) and their diploid parents using next-generation sequencing. In total, 157,878 contigs were assembled and 15,444 genes were annotated. We examined gene expression level changes among the parents and their triploid offspring. The mechanisms of dosage compensation that reduced triploid expression levels to the diploid state were determined in triploid fish. In this situation, novel gene expression and gene silencing were observed. Then, we established a model to determine the extent and direction of expression level dominance (ELD) and homoeolog expression bias (HEB) based on the relative expression level among the parents and their triploid offspring. CONCLUSIONS: Our results showed that the genome-wide ELD was biased toward maternal genome in triploid. Extensive alterations in homoeolog expression suggested a combination of regulatory and epigenetic interactions through the transcriptome network. Additionally, the expression patterns of growth genes provided insights into the relationship between the characteristics of growth and underlying mechanisms in triploids. Regulation patterns of triploid state suggest that various expression levels from the initial genomic merger have important roles in adaptation.


Assuntos
Mecanismo Genético de Compensação de Dose , Peixes/genética , Dosagem de Genes , Expressão Gênica , Hibridização Genética , Triploidia , Animais , Diploide , Feminino , Perfilação da Expressão Gênica , Genes Dominantes , Masculino , Característica Quantitativa Herdável , Reprodutibilidade dos Testes , Transcriptoma
12.
Comput Biol Chem ; 112: 108113, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38851150

RESUMO

The integration of artificial intelligence (AI) into smart agriculture boosts production and management efficiency, facilitating sustainable agricultural development. In intensive agricultural management, adopting eco-friendly and effective pesticides is crucial to promote green agricultural practices. However, exploring new insecticides species is a difficult and time-consuming task that involves significant risks. Enhancing compound druggability in the lead discovery phase could considerably shorten the discovery cycle, accelerating insecticides research and development. The Insecticide Activity Prediction (IAPred) model, a novel classic artificial intelligence-based method for evaluating the potential insecticidal activity of unknown functional compounds, is introduced in this study. The IAPred model utilized 27 insecticide-likeness features from PaDEL descriptors and employed an ensemble of Support Vector Machine (SVM) and Random Forest (RF) algorithms using the hard-vote mechanism, achieving an accuracy rate of 86 %. Notably, the IAPred model outperforms current models by accurately predicting the efficacy of novel insecticides such as nicofluprole, overcoming the limitations inherent in existing insecticide structures. Our research presents a practical approach for discovering and optimizing novel insecticide lead compounds quickly and efficiently.


Assuntos
Agricultura , Inteligência Artificial , Inseticidas , Inseticidas/farmacologia , Inseticidas/química , Algoritmos , Máquina de Vetores de Suporte
13.
Adv Mater ; 36(18): e2312204, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38271730

RESUMO

The electrochemical carbon dioxide (CO2) reduction reaction (CO2RR) involves a multistep proton-coupled electron transfer (PCET) process that generates a variety of intermediates, making it challenging to transform them into target products with high activity and selectivity. Here, a catalyst featuring a nanosheet-stacked sphere structure with numerous open and deep conical cavities (OD-CCs) is reported. Under the guidance of the finite-element method (FEM) simulations and theoretical analysis, it is shown that exerting control over the confinement space results in diffusion limitation of the carbon intermediates, thereby increasing local pressure and subsequently enhancing localized *CO coverage for dimerization. The nanocavities exhibit a structure-driven shift in selectivity of multicarbon (C2+) product from 41.8% to 81.7% during the CO2RR process.

14.
Artigo em Inglês | MEDLINE | ID: mdl-39042151

RESUMO

Intergeneric hybridization greatly reshapes regulatory interactions among allelic and non-allelic genes. However, their effects on growth diversity remain poorly understood in animals. In this study, we conducted whole-genome sequencing and RNA sequencing (RNA-seq) analyses in diverse hybrid varieties resulting from the intergeneric hybridization of goldfish (Carassius auratus red var.) and common carp (Cyprinus carpio). These hybrid individuals were characterized by distinct mitochondrial genomes and copy number variations. Through a weighted gene correlation network analysis, we identified 3693 genes as candidate growth-regulated genes. Among them, the expression of 3672 genes in subgenome R (originating from goldfish) displayed negative correlations with growth rate, whereas 20 genes in subgenome C (originating from common carp) exhibited positive correlations. Notably, we observed intriguing patterns in the expression of slc2a12 in subgenome C, showing opposite correlations with body weight that changed with water temperatures, suggesting differential interactions between feeding activity and weight gain in response to seasonal changes for hybrid animals. In 40.31% of alleles, we observed dominant trans-regulatory effects in the regulatory interaction between distinct alleles from subgenomes R and C. Integrating analyses of allelic-specific expression and DNA methylation data revealed that the influence of DNA methylation on both subgenomes shapes the relative contribution of allelic expression to the growth rate. These findings provide novel insights into the interaction of distinct subgenomes that underlie heterosis in growth traits and contribute to a better understanding of multiple allele traits in animals.

15.
J Transl Med ; 11: 132, 2013 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-23714001

RESUMO

BACKGROUND: Endothelial progenitor cells (EPCs) contribute to tumor angiogenesis and growth. We previously reported that over-expression of an inhibitor of DNA binding/differentiation 1 (Id1) in EPCs can enhance EPC proliferation, migration, and adhesion. In this study, we investigated the role of Id1 in EPC angiogenesis in patients with ovarian cancer and the underlying signaling pathway. METHODS: Circulating EPCs from 22 patients with ovarian cancer and 15 healthy control subjects were cultured. Id1 and matrix metalloproteinase-2 (MMP-2) expression were analyzed by real-time reverse transcription-polymerase chain reaction (RT-PCR) and western blot. EPC angiogenesis was detected by tube formation assays. Double-stranded DNA containing the interference sequences was synthesized according to the structure of a pGCSIL-GFP viral vector and then inserted into a linearized vector. Positive clones were identified as lentiviral vectors that expressed human Id1 short hairpin RNA (shRNA). RESULTS: Id1 and MMP-2 expression were increased in EPCs freshly isolated from ovarian cancer patients compared to those obtained from healthy subjects. shRNA-mediated Id1 down-regulation substantially reduced EPC angiogenesis and MMP-2 expression. Importantly, transfection of EPCs with Id1 in vitro induced phosphorylation of Akt (p-Akt) via phosphoinositide 3-kinase and increased the expression of MMP-2 via NF-κB. Blockage of both pathways by specific inhibitors (LY294002 and PDTC, respectively) abrogated Id1-enhanced EPC angiogenesis. CONCLUSIONS: Id1 can enhance EPC angiogenesis in ovarian cancer, which is mainly mediated by the PI3K/Akt and NF-κB/MMP-2 signaling pathways. Id1 and its downstream effectors are potential targets for treatment of ovarian cancer because of their contribution to angiogenesis.


Assuntos
Células Endoteliais/metabolismo , Proteína 1 Inibidora de Diferenciação/metabolismo , Neovascularização Patológica , Neoplasias Ovarianas/metabolismo , Transdução de Sinais , Células-Tronco/metabolismo , Adulto , Inibidores Enzimáticos/farmacologia , Feminino , Regulação Neoplásica da Expressão Gênica , Proteínas de Fluorescência Verde/metabolismo , Humanos , Metaloproteinase 2 da Matriz/metabolismo , Pessoa de Meia-Idade , NF-kappa B/metabolismo , Fenótipo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Interferente Pequeno/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
16.
Biosci Rep ; 43(1)2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36714956

RESUMO

Diabetic retinopathy (DR) is the leading cause of blindness in the working population worldwide, with few effective drugs available for its treatment in the early stages. The Zhujing pill (ZJP) is well-established to enhance the early symptoms of DR, but the mechanism underlying its therapeutic effect remains unclear. In the present study, we used systems biology and multidirectional pharmacology to screen the main active ingredients of ZJP and retrieved DrugBank and Genecards databases to obtain 'drug-disease' common targets. Using bioinformatics analysis, we obtained the core targets, and potential mechanisms of action of ZJP and its main components for the treatment of DR. Molecular docking was used to predict the binding sites and the binding affinity of the main active ingredients to the core targets. The predicted mechanism was verified in animal experiments. We found that the main active ingredient of ZJP was oleanolic acid, and 63 common 'drug-disease' targets were identified. Topological analysis and cluster analysis based on the protein-protein interaction network of the Metascape database screened the core targets as PRKCA, etc. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed that these core targets were significantly enriched in the pro-angiogenic pathway of the VEGF signaling pathway. Molecular docking and surface plasmon resonance revealed that ZJP and its main active component, oleanolic acid had the highest binding affinity with PKC-α, the core target of the VEGF signaling pathway. Animal experiments validated that ZJP and oleanolic acid could improve DR.


Assuntos
Diabetes Mellitus , Retinopatia Diabética , Medicamentos de Ervas Chinesas , Ácido Oleanólico , Animais , Farmacologia em Rede , Retinopatia Diabética/tratamento farmacológico , Ácido Oleanólico/farmacologia , Ácido Oleanólico/uso terapêutico , Simulação de Acoplamento Molecular , Fator A de Crescimento do Endotélio Vascular , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico
17.
Front Oncol ; 13: 1135523, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37213272

RESUMO

Ovarian cancer is the most deadly gynecologic malignancy, and its incidence is gradually increasing. Despite improvements after treatment, the results are unsatisfactory and survival rates are relatively low. Therefore, early diagnosis and effective treatment remain two major challenges. Peptides have received significant attention in the search for new diagnostic and therapeutic approaches. Radiolabeled peptides specifically bind to cancer cell surface receptors for diagnostic purposes, while differential peptides in bodily fluids can also be used as new diagnostic markers. In terms of treatment, peptides can exert cytotoxic effects directly or act as ligands for targeted drug delivery. Peptide-based vaccines are an effective approach for tumor immunotherapy and have achieved clinical benefit. In addition, several advantages of peptides, such as specific targeting, low immunogenicity, ease of synthesis and high biosafety, make peptides attractive alternative tools for the diagnosis and treatment of cancer, particularly ovarian cancer. In this review, we focus on the recent research progress regarding peptides in the diagnosis and treatment of ovarian cancer, and their potential applications in the clinical setting.

18.
J Agric Food Chem ; 71(1): 244-254, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36579419

RESUMO

Nematode chitinases are critical components of the nematode life cycle, and CeCht1 is a potential target for developing novel nematicides. Herein, lunidonine, a natural quinoline alkaloid, was first discovered to have inhibitory activity against CeCht1, which was acquired from a library of over 16,000 natural products using a structure-based virtual screening methodology. A pocket-based lead optimization strategy was employed based on the predicted binding mode of lunidonine. Subsequently, a series of benzo[d][1,3]dioxole-5-carboxylate derivatives were designed and synthesized, and their inhibitory activities against CeCht1 as well as in vitro nematicidal activities against Caenorhabditis elegans were assessed. The analysis of structure-activity relationship and inhibitory mechanisms provided insights into their interactions with the CeCht1 active site, which could facilitate future research in improving the potency of the inhibitory activity. Especially, compound a12 interacted well with CeCht1 and exhibited excellent in vitro nematicidal activity against C. elegans with a LC50 value of 41.54 mg/L, suggesting that it could be a promising candidate for a novel chemical nematicide targeting CeCht1. The known binding modes and structural features of these inhibitors will contribute to the design of stronger CeCht1-based nematicides to control nematodes in agriculture.


Assuntos
Antinematódeos , Caenorhabditis elegans , Animais , Antinematódeos/farmacologia , Antinematódeos/química , Relação Estrutura-Atividade , Domínio Catalítico , Dose Letal Mediana
19.
J Agric Food Chem ; 71(22): 8345-8355, 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37249178

RESUMO

Insect growth regulators (IGRs) disrupt normal development of physiological processes in insects and are recognized as green insecticides. Insect chitinases play a crucial role in cuticle degradation during molting, and OfChtI, OfChtII, and OfChi-h are the prospective targets for discovering new insecticides as IGRs. In our previous study, we identified the lead compound a12 as a promising multitarget inhibitor. Herein, we used the binding modes of a12 with three chitinases to recognize the critical interactions and residues favorable to the bioactivity. Subsequently, to improve the bioactivity of inhibitors via enhanced the interactions with important residues, a series of benzo[d][1,3]dioxole-6-benzamide derivatives were rationally designed and synthesized, and their inhibitory activities against Ostrinia furnacalis (O. furnacalis) chitinases, as well as insecticidal activities against O. furnacalis and Plutella xylostella (P. xylostella) were investigated. Among them, compound d29 acted simultaneously on OfChtI, OfChtII, and OfChi-h with Ki values of 0.8, 11.9, and 2.3 µM, respectively, a significant improvement over the inhibitory activity of the lead compound a12. Moreover, d29 exhibited superior activity than a12 against two lepidopteran pests by interfering with normal insect growth and molting, indicating that d29 is a potential lead candidate for novel IGRs with a multichitinase mechanism. The present study revealed that simultaneous inhibition on multiple chitinases could achieve excellent insecticidal activity. The elucidation of inhibition mechanisms and molecular conformations illustrated the interactions with the three chitinases, as well as the discrepancy in bioactivity, which will be beneficial for future work to improve the potency of bioactivity as IGRs for pest control in sustainable agriculture.


Assuntos
Quitinases , Inseticidas , Mariposas , Animais , Inseticidas/farmacologia , Inseticidas/química , Mariposas/metabolismo , Insetos/metabolismo , Quitinases/química
20.
Pest Manag Sci ; 79(10): 3773-3784, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37203559

RESUMO

BACKGROUND: Laccase is a key enzyme in the fungal 1,8-dihydroxynaphthalene (DHN) melanin biosynthesis pathway, which is a potential target for the control of pathogenic fungi. In our previous work, compound a2 was found with higher inhibition activity against laccase and antifungal activity than laccase inhibitor PMDD-5Y. The introduction of hydrogen-bonded receptors in the amino part was found to be beneficial in improving laccase inhibitory activity by target-based-biological rational design. In this work, the hydrogen-bonded receptors morpholine and piperazine were introduced for structure optimization to enhancing biological activity. RESULTS: Enzyme activity tests indicated that all target compounds had inhibitory activity against laccase, and some compounds exhibited better activity against laccase than a2, it was further verified that the introduction of hydrogen-bonded receptors in the amino portion could enhance the laccase inhibitory activity of target compounds. Most compounds showed excellent antifungal activities in vitro. Compound m14 displayed good activity against Magnaporthe oryzae both in vitro and in vivo. The scanning electron microscopy (SEM) analysis showed that the mycelium of M. oryzae treated with m14 were destroyed. Molecular docking revealed the binding mode between laccase and target compounds. CONCLUSION: Thirty-eight compounds were synthesized and showed good inhibitory activity against laccase, the introduction of morpholine and piperazine in the amino part was beneficial to improve antifungal activity and laccase activity. Further validation of laccase as a potential target for rice blast control, while m14 can be used as a candidate compound for the control of rice blast. © 2023 Society of Chemical Industry.


Assuntos
Antifúngicos , Magnaporthe , Antifúngicos/química , Lacase/metabolismo , Simulação de Acoplamento Molecular , Morfolinas/metabolismo , Piperazinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA