Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Opt Express ; 31(4): 5940-5950, 2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36823863

RESUMO

In this paper, a dual-band terahertz absorber based on metamaterial structure is designed, fabricated, and measured. The metal periodic array is located on the upper surface of a silicon wafer with a metal ground plane, while the metamaterial structure is created utilizing a square metal ring with four T-shaped metal strips loaded inside of the ring. Two absorption peaks are realized at 0.715 and 1.013 THz with high Q-factors of 152.1 and 98.3, respectively, under normal TE and TM polarized incidence. A prototype of the proposed metamaterial absorber is fabricated by electron beam lithography (EBL) and electron beam evaporation (EBE) technology. Furthermore, a terahertz time-domain spectroscopy (TDS) measurement system is employed to test the absorber sample, with good measurement results obtained. This work provides a new option for the design of multi-band terahertz metamaterial absorbers.

2.
Appl Opt ; 62(14): 3672-3682, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37706984

RESUMO

To overcome the diffraction limit, a laser irradiating cantilevered scanning near-field optical microscopy (SNOM) probe has been used in near-field optical nanopatterning. In this paper, the mechanism of nanopatterning on noble metal nano-films by this technique is investigated by the finite element method. It is proposed that the main mechanism of this phenomenon is the melt and reshaping of the nano-film under the SNOM tip. The melt is caused by the surface plasmon polariton-assisted enhancement and restriction within the SNOM tip aperture. The impacts of the gap g between the tip and substrate and the polarization of the laser are further analyzed.

3.
Nanotechnology ; 34(7)2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36379047

RESUMO

Diffraction limit has been the constraint of the nanostructure fabrication. Because the scanning near-field optical microscopy (SNOM) can work in the evanescent near-field region, its application in nano-processing has received extensive attention from researchers globally. In this paper, we combined nanosecond laser with cantilevered SNOM probe. Utilizing the high precision of the confinement and enhancement effect of probe tip and the high instantaneous energy of the laser, we realized nanostructure fabrication andin situdetection on Au nano-film. Feature sizes down to 47 nm full width at half maximum were fabricated. We investigated the laser propagation through the SNOM tip aperture and the light field intensity distribution on the surface of substrate theoretically. The calculation results demonstrate that the laser is highly restricted within the SNOM aperture and enhanced on the exit plane at the rim of aperture. After the transmission, the light field intensity distribution on the surface of the Au nano-film was enhanced due to the localized surface plasmon resonance. The thermal distribution on the surface of Au nano-film indicates that the peak of the temperature distribution appeared at the surface right underneath the center of the aperture. It is proved that the simulation results are consistent with the experimental results.

4.
Appl Opt ; 61(33): 9773-9780, 2022 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-36606805

RESUMO

Nanostructure processing by a laser illuminating cantilevered scanning near-field optical microscopy (SNOM) tip is a novel technology that has received extensive attention from researchers. In this paper, theoretical investigations of the mechanism for nanostructure fabrication on Au and Ag nano-film by this technology are realized by the finite element method. The light field intensity and temperature distribution on Au and Ag surfaces at the near-field of the SNOM tip apex after illumination is simulated. The results reveal that the laser is restricted and enhanced within the SNOM tip aperture during illumination. Locally excited surface plasmon polaritons, which induce near-field enhancement on the Au and Ag nano-film at the vicinity of the aperture, are significant for nanostructure fabrication. The impacts of several parameters such as aperture width w, gap between the apex and substrate g, and the initial electric field intensity |E0| of the laser on the temperature of the Au and Ag substrate surfaces during fabrication are deeply studied. It reveals that the surface temperature depends on both the enhancement of the light field intensity and the transmitted laser. The enhancement is dominant in affecting temperature when the gap is small, while the transmittance becomes the main factor influencing the surface temperature with the increase of the gap.

5.
Appl Opt ; 60(36): 11018-11026, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-35201089

RESUMO

The nanofabrication platform was carried out using an atomic force microscope (AFM) system and a continuous wave (cw) laser to investigate the influence of laser power on the underlying mechanism of nanostructures fabricated by multiphysics fields tip enhancement (MFTE) induced by a cw laser irradiating the AFM probe tip. The nanostructure fabrication of nanopits and grooves and nanodots and lines on a polymethyl methacrylate thin film was conducted in an ambient environment by changing the incident laser power. The dependence of the MFTE on laser power was numerically analyzed, too. The lateral dimensions of nanopits and grooves and nanodots and lines characterized in situ were 154 nm, 96 nm, 188 nm, and 25 nm, respectively, breaking the optical diffraction limit. It turned out that the nanostructures converted from craters (pits and grooves) to protrusions (dots and lines) when altered with the laser power. Different laser powers can trigger the MFTE to change, thus, inducing varied coupling energy, which is the essential mechanism for nanostructure conversion. We also established a model to analyze the nanostructures transition and to predict the dimensions of nanostructures. The simulation results demonstrate that the MFTE has an essential effect on the formation of nanostructures, which are in good agreement with the experimental results.

6.
Opt Express ; 27(19): 26264-26280, 2019 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-31674512

RESUMO

Silicon carbide (SiC) ceramics have been widely used for microelectronics, aerospace, and other industrial fields due to their excellent chemical stability and thermal tolerance. However, hard machinability and low machining precision of SiC ceramics are the key limitations for their further applications. To address this issue, a novel method of underwater femtosecond laser machining was introduced in this study to obtain high precision and smooth surface of the microgrooves of SiC ceramics. The removal profiles were characterized in terms of width, depth, and surface morphology, which exhibited high dependence on the femtosecond laser processing parameters. The instability during the underwater processing affected by laser-induced gas bubbles and material deposition, however, limits the high surface accuracy of microgrooves and processing efficiency. The process condition transformation from a bubble-disturbed circumstance to a disturbance-free model was carefully investigated through a high speed camera for the femtosecond laser processing of SiC ceramics in water. The experiment results indicated that degree of disturbed effect was heavily dependent on size, distribution, and motion of laser-induced gas bubble. Furthermore, some typical evolution mechanisms of gas bubble and their influence on the removal profiles of microgrooves were discussed in detail. Bubble evolution has been proven to be mainly responsible for the behavior of laser propagation (focus model, total reflection, etc.), which notably affects microstructural characteristic of the microgrooves.

7.
ACS Appl Mater Interfaces ; 16(7): 9371-9379, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38214215

RESUMO

The wetting behavior of silver at the nanoscale on a textured diamond substrate is not absolutely roughness-dependent in printing diamond chips, tough bioimplant coating, and joining for cutting tool industries. This study uses a molecular dynamics simulation to capture the stochastic wetting behavior toward precision for given geometries. It is deduced that the metalophilic character of molten silver is increased with an increase in roughness on sinusoidal contoured diamond substrates rather than orthogonal pillars of the same roughness until an equilibration time of 210 ps at a temperature of 950 K. Increasing the roughness after the equilibrium time causes a supermetalophilic angle of 13° for the sinusoid at 500 ps, and the orthogonal design causes the Wenzel state. Therefore, wetting states are metastable and ultimately depend upon the wetting time and geometry rather than the roughness only. A high joining strength creates a long-lasting coating, owing to the high surface energy of the textured surface. This study presents effective thin seam development in the least possible time of 230 ps and silver consumption at the nanoscale for supermetalophilic and metalophobic coatings in electronic packaging.

8.
Nanoscale ; 15(7): 3398-3407, 2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36722909

RESUMO

In this paper, a dual-band metamaterial absorber in the terahertz frequencies is proposed and its refractive index sensing characteristics is analyzed. The metamaterial structure is designed using a square metal ring with four T-shaped strips loaded outside of the ring, where the metal periodic array is on top of a silicon wafer backed with a metal ground plane. The resonant frequencies of the absorber are at 0.89 and 1.36 THz, whose absorption rates are both over 99% under normal TE and TM polarized incidences. The full widths at half maximum of them are 4.4 and 11.2 GHz, respectively, resulting in high quality factors (Q-factors) for these two frequency bands. The absorption rate of the absorber remains stable as the incident and polarized angles are changed. Several proposed metamaterial absorbers are experimentally fabricated and electron beam lithography (EBL) technology is employed. Good measurement results of the dual-band absorption performance are obtained using a terahertz time-domain spectroscopy system based on photoconductive antennas. Furthermore, the metamaterial absorber also shows sensing properties for analytes with different refractive indices or thicknesses. This work provides a new choice for the design of high-Q dual-band terahertz metamaterial absorbers and their application to refractive index sensing.

9.
Materials (Basel) ; 14(14)2021 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-34300946

RESUMO

Polycrystalline diamond (PCD) skiving cutter has dominated research in recent years. However, the traditional methods of fabrication have failed to cut the diamond with high quality. We propose the two-step laser machining process combining roughing machining with orthogonal irradiation and finishing machining with tangential irradiation. In addition, the processing effect and mechanism of different lasers on the diamond were investigated by a finite element analysis. It's proved that the ultraviolet nanosecond laser is an excellent machining method for the processing of diamond. Furthermore, the effect of the processing parameters on the contour accuracy (Rt) was studied. The result indicates that the Rt value decreases first and then increases as the increase of the line interval, scanning speed and defocusing amount (no matter positive or negative defocus). Further, Raman spectroscopy was applied to characterize the diamond surface under different cutting methods and the flank face of the tool after processing. Finally, a high-quality PCD skiving cutter was obtained with an Rt of 5.6 µm and no phase transition damage.

10.
ACS Appl Mater Interfaces ; 12(7): 8870-8878, 2020 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-32011852

RESUMO

Many arthropods have compound eyes, which are made up of numerous separate visual units (microlenses) or ommatidia. These natural compound eyes have exceptional optical properties such as wide field of view (FOV), low aberration, and fast motion tracking capability. In this paper, a large-scale artificial compound eye (ACE) is fabricated efficiently using a combination of inkjet printing and air-assisted deformation processes. Both size and geometry of the microlens are controlled via superposed drops on the substrate. The simulation results show that the light intensity of the ACE follows a systematic distribution for tilted incident light, which represents a significant improvement, compared to planar distributed microlenses. We then manufacture ACEs with different heights and diameters, and their FOVs are compared with the theoretically predicted results. The measured FOV was 50°-140°. The acceptance angles for the different ACEs are determined, and their relationship with the ratio of height to radius (H/r) of the microlens is investigated in more detail. Furthermore, the imaging properties of the microlenses with different angles of incidences are studied, which suggest a FOV up to 140° and an acceptance angle of about 50°. The microlens captures images even at an angle of incidence of about 60°. The corresponding distortion in both the x and y directions is also investigated. Our findings provide guidelines for the development and fabrication of ACEs with large FOVs and acceptance angles, which may find applications in military, robotics, medical imaging, and astronomy.


Assuntos
Biomimética/métodos , Desenho de Equipamento/instrumentação , Imageamento Tridimensional/instrumentação , Lentes , Dispositivos Ópticos , Impressão Tridimensional/instrumentação , Animais , Biomimética/instrumentação , Olho Composto de Artrópodes , Desenho de Equipamento/métodos , Imageamento Tridimensional/métodos , Luz , Raios Ultravioleta
11.
Materials (Basel) ; 13(6)2020 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-32178440

RESUMO

The behavior at an interface between carbon nanotubes (CNTs) and silver nanowire (AgNW) could hardly be observed experimentally on an atomic scale, and the interaction is difficult to accurately calculate due to nanometer size effects. In this work, the contact behavior is studied with the molecular dynamics (MD) simulation, which indicates that the CNTs and AgNW can move towards each other to form aligned structures with their interfaces in full contact. In these different composite systems, nanotubes may either keep their form of an inherent cylindrical structure or completely collapse into the nanoribbons that can tightly scroll on the AgNW periphery while wrapping it in a core-shell structure. Thus, the atomic configuration evolution that is affected by the van der Waals (vdW) interaction is closely analyzed to assist the understanding of interfacial contact behavior.

12.
Materials (Basel) ; 12(19)2019 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-31546710

RESUMO

Laser surface re-melting (LSR) is a well-known method to improve the properties of atmospheric plasma-spraying thermal barrier coatings (APS TBCs) by eliminating the voids, incompletely melted particles and layered-structure. Laser energy density should be carefully selected to reduce the exposed thermal damage of the underlying single crystal (SX) matrix. Therefore, the purpose of this paper was to identify the effect of introducing induction heating to laser modifying of APS TBCs coated on Ni-based SX superalloy. The results indicated that the preheating of the substrate can lower the laser energy threshold that is required for continuously re-melting the coating. It proved that, in LSR processing of a APS TBCs/ SX matrix multilayer system, the combined method of adopting the low laser energy and preheating at elevated temperature is an effective means of minimizing the cracking susceptibility of top ceramic coating, resulting from decreasing the mismatch strain between the re-melted layer and residual APS TBCs, which can significantly improve the segmented crack condition in terms of crack dimension and crack density. Moreover, this combined method can remarkably lower heat input into an SX matrix and correspondingly the interface stored energy induced by pulsed laser thermal shock, which can effectively lower the tendency for surface recrystallization after the subsequent heat treatment.

13.
ACS Nano ; 13(1): 114-124, 2019 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-30623651

RESUMO

This study presents the manufacturing process of bioinspired compound (BIC) eyes. The hierarchical eyes were accomplished by a combination of (i) modified laser swelling, (ii) air-assisted deformation, and (iii) controlled crystal growth. The results show that the addition of nanostructures on the surface effectively improved the water repellent performance with a contact angle (CA) of ∼160° and generally decreased the reflection by ∼25% in the wavelength range of 400-800 nm than the planar surface. Apart from these properties, the BIC eyes showed good optical performance. The convex structure has a circular shape and aspherical profile; this provides optical uniformity and constant resolution (full width at half-maximum = 1.9 µm) in all the directions. Furthermore, the BIC eyes reduced the imaging distortion by 1.5/3.4 and 2.3/3.1 times along the x and y axes, respectively, under 10° and 20° incident lights than a single lens. In the light acceptance range, the image displays almost no distortion.

14.
ACS Appl Mater Interfaces ; 7(4): 2294-300, 2015 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-25582678

RESUMO

With the development of nanoscience and nanotechnology for the bottom-up nanofabrication of nanostructures formed from polystyrene nanoparticles, joining technology is an essential step in the manufacturing and assembly of nanodevices and nanostructures in order to provide mechanical integration and connection. To study the nanospot welding of polystyrene nanoparticles, we propose a new nanospot-soldering method using the near-field enhancement effect of a metallic atomic force microscope (AFM) probe tip that is irradiated by an optical fiber probe laser. On the basis of our theoretical analysis of the near-field enhancement effect, we set up an experimental system for nanospot soldering; this approach is carried out by using an optical fiber probe laser to irradiate the AFM probe tip to sinter the nanoparticles, providing a promising technical approach for the application of nanosoldering in nanoscience and nanotechnology.

15.
ACS Appl Mater Interfaces ; 6(3): 2044-50, 2014 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-24392855

RESUMO

The miniaturization of electronics devices into the nanometer scale is indispensable for next-generation semi-conductor technology. Carbon nanotubes (CNTs) are considered to be the promising candidates for future interconnection wires. To study the carbon nanotubes interconnection during nanosoldering, the melting process of nanosolder and nanosoldering process between single-walled carbon nanotubes are simulated with molecular dynamics method. As the simulation results, the melting point of 2 nm silver solder is about 605 K because of high surface energy, which is below the melting temperature of Ag bulk material. In the nanosoldering process simulations, Ag atoms may be dragged into the nanotubes to form different connection configuration, which has no apparent relationship with chirality of SWNTs. The length of core filling nanowires structure has the relationship with the diameter, and it does not become longer with the increasing diameter of SWNT. Subsequently, the dominant mechanism of was analyzed. In addition, as the heating temperature and time, respectively, increases, more Ag atoms can enter the SWNTs with longer length of Ag nanowires. And because of the strong metal bonds, less Ag atoms can remain with the tight atomic structures in the gap between SWNT and SWNT. The preferred interconnection configurations can be achieved between SWNT and SWNT in this paper.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA