RESUMO
BACKGROUND: Ischemic stroke (IS) represents a significant health burden globally, necessitating a better understanding of its genetic underpinnings to improve prevention and treatment strategies. Despite advances in IS genetics, studies focusing on the Spanish population and sex-stratified analyses are lacking. METHODS: A case-control genome-wide association study was conducted with 9081 individuals (3493 IS cases and 5588 healthy controls). IS subtypes using Trial of ORG 10172 in Acute Stroke Treatment criteria were explored in a sex-stratified approach. Replication efforts involved the MEGASTROKE, GIGASTROKE, and the UK Biobank international cohorts. Post-genome-wide association study analysis included: in silico proteomic analysis, gene-based analysis, quantitative trait loci annotation, transcriptome-wide association analysis, and bioinformatic analysis using chromatin accessibility data. RESULTS: Identified as associated with IS and its subtypes were 4 significant and independent loci. Replication confirmed 5p15.2 as a new locus associated with small-vessel occlusion stroke, with rs59970332-T as the lead variant (beta [SE], 0.13 [0.02]; P=4.34×10-8). Functional analyses revealed CTNND2 given proximity and its implication in pathways involved in vascular integrity and angiogenesis. Integration of Hi-C data identified additional potentially modulated genes, and in silico proteomic analysis suggested a distinctive blood proteome profile associated with the lead variant. Gene-set enrichment analyses highlighted pathways consistent with small-vessel disease pathogenesis. Gene-based associations with known stroke-related genes such as F2 and FGG were also observed, reinforcing the relevance of our findings. CONCLUSIONS: We found CTNND2 as a potential key molecule in small-vessel occlusion stroke risk, and predominantly in males. This study sheds light on the genetic architecture of IS in the Spanish population, providing novel insights into sex-specific associations and potential molecular mechanisms. Further research, including replication in larger cohorts, is essential for a comprehensive understanding of these findings and for their translation to clinical practice.
Assuntos
Estudo de Associação Genômica Ampla , Acidente Vascular Cerebral Lacunar , Humanos , Masculino , Espanha/epidemiologia , Feminino , Pessoa de Meia-Idade , Idoso , Acidente Vascular Cerebral Lacunar/genética , Estudos de Casos e Controles , AVC Isquêmico/genética , AVC Isquêmico/epidemiologia , Predisposição Genética para Doença/genética , Polimorfismo de Nucleotídeo Único/genéticaRESUMO
BACKGROUND: Gut microbiota plays a role in the pathophysiology of ischaemic stroke (IS) through the bidirectional gut-brain axis. Nevertheless, little is known about sex-specific microbiota signatures in IS occurrence. METHODS: A total of 89 IS patients and 12 healthy controls were enrolled. We studied the taxonomic differences of the gut microbiota between men and women with IS by shotgun metagenomic sequencing. To evaluate the causal effect of several bacteria on IS risk, we performed a two-sample Mendelian randomisation (MR) with inverse-variance weighting (IVW) using genome-wide association analysis (GWAS) summary statistics from two cohorts of 5959 subjects with genetic and microbiota data and 1,296,908 subjects with genetic and IS data, respectively. RESULTS: α-Diversity analysis measured using Observed Species (p = 0.017), Chao1 (p = 0.009) and Abundance-based Coverage Estimator (p = 0.012) indexes revealed that IS men have a higher species richness compared with IS women. Moreover, we found sex-differences in IS patients in relation to the phylum Fusobacteria, class Fusobacteriia, order Fusobacteriales and family Fusobacteriaceae (all Bonferroni-corrected p < 0.001). MR confirmed that increased Fusobacteriaceae levels in the gut are causally associated with an increased risk of IS (IVW p = 0.02, ß = 0.32). CONCLUSIONS: Our study is the first to indicate that there are gut microbiome differences between men and women with IS, identifying high levels of Fusobacteriaceae in women as a specific risk factor for IS. Incorporating sex stratification analysis is important in the design, analysis and interpretation of studies on stroke and the gut microbiota.
RESUMO
BACKGROUND: Recent evidence suggests that the failure of the glymphatic system - the brain's waste clearance system, which is active during sleep - plays a key role in the pathophysiology of Alzheimer's Disease (AD). Glymphatic function can be investigated using serial MRIs after intrathecal gadobutrol injection. This technique can reveal the health of the glymphatic system, but has not yet been used in participants with cognitive impairment due to AD. CASE REPORT: This report describes the sleep and gadobutrol tracer clearance patterns of four participants diagnosed with mild to moderate cognitive impairment with evidence of AD pathology (pathological levels of Ab and p-tau in cerebrospinal fluid). We performed polysomnography and MRI studies before tracer injection and MRI scans at 1.5-2 h, 5-6 h, and 48 h after injection. Despite participants reporting no sleep problems, polysomnography revealed that all participants had moderate to severe sleep disturbances, including reduced sleep efficiency during the study and obstructive sleep apnea. Severe side-effects related to tracer administration were observed, impeding the completion of the protocol in two participants. Participants who finished the protocol displayed delayed and persistent tracer enrichment in the cortex and white matter, even 48 h after injection. These outcomes have not been observed in previous studies in participants without AD. CONCLUSION: The findings suggest that brains with sleep impairment and AD pathology have poor glymphatic function, and therefore cannot clear the contrast tracer efficiently. This is likely to have caused the severe side effects in our participants, that have not been reported in healthy individuals. Our results may therefore represent the only available data acquired with this technique in participants with AD pathology.
Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/complicações , Encéfalo/diagnóstico por imagem , Sono , CogniçãoRESUMO
During the first hours after stroke onset, neurological deficits can be highly unstable: some patients rapidly improve, while others deteriorate. This early neurological instability has a major impact on long-term outcome. Here, we aimed to determine the genetic architecture of early neurological instability measured by the difference between the National Institutes of Health Stroke Scale (NIHSS) within 6â h of stroke onset and NIHSS at 24â h. A total of 5876 individuals from seven countries (Spain, Finland, Poland, USA, Costa Rica, Mexico and Korea) were studied using a multi-ancestry meta-analyses. We found that 8.7% of NIHSS at 24â h of variance was explained by common genetic variations, and also that early neurological instability has a different genetic architecture from that of stroke risk. Eight loci (1p21.1, 1q42.2, 2p25.1, 2q31.2, 2q33.3, 5q33.2, 7p21.2 and 13q31.1) were genome-wide significant and explained 1.8% of the variability suggesting that additional variants influence early change in neurological deficits. We used functional genomics and bioinformatic annotation to identify the genes driving the association from each locus. Expression quantitative trait loci mapping and summary data-based Mendelian randomization indicate that ADAM23 (log Bayes factor = 5.41) was driving the association for 2q33.3. Gene-based analyses suggested that GRIA1 (log Bayes factor = 5.19), which is predominantly expressed in the brain, is the gene driving the association for the 5q33.2 locus. These analyses also nominated GNPAT (log Bayes factor = 7.64) ABCB5 (log Bayes factor = 5.97) for the 1p21.1 and 7p21.1 loci. Human brain single-nuclei RNA-sequencing indicates that the gene expression of ADAM23 and GRIA1 is enriched in neurons. ADAM23, a presynaptic protein and GRIA1, a protein subunit of the AMPA receptor, are part of a synaptic protein complex that modulates neuronal excitability. These data provide the first genetic evidence in humans that excitotoxicity may contribute to early neurological instability after acute ischaemic stroke.
Assuntos
Isquemia Encefálica , AVC Isquêmico , Acidente Vascular Cerebral , Teorema de Bayes , Isquemia Encefálica/complicações , Isquemia Encefálica/genética , Estudo de Associação Genômica Ampla , Humanos , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/genética , Estados UnidosRESUMO
We aimed to analyse whether patients with ischaemic stroke (IS) occurring within eight days after the onset of COVID-19 (IS-COV) are associated with a specific aetiology of IS. We used SUPERGNOVA to identify genome regions that correlate between the IS-COV cohort (73 IS-COV cases vs. 701 population controls) and different aetiological subtypes. Polygenic risk scores (PRSs) for each subtype were generated and tested in the IS-COV cohort using PRSice-2 and PLINK to find genetic associations. Both analyses used the IS-COV cohort and GWAS from MEGASTROKE (67,162 stroke patients vs. 454,450 population controls), GIGASTROKE (110,182 vs. 1,503,898), and the NINDS Stroke Genetics Network (16,851 vs. 32,473). Three genomic regions were associated (p-value < 0.05) with large artery atherosclerosis (LAA) and cardioembolic stroke (CES). We found four loci targeting the genes PITX2 (rs10033464, IS-COV beta = 0.04, p-value = 2.3 × 10-2, se = 0.02), previously associated with CES, HS6ST1 (rs4662630, IS-COV beta = -0.04, p-value = 1.3 × 10-3, se = 0.01), TMEM132E (rs12941838 IS-COV beta = 0.05, p-value = 3.6 × 10-4, se = 0.01), and RFFL (rs797989 IS-COV beta = 0.03, p-value = 1.0 × 10-2, se = 0.01). A statistically significant PRS was observed for LAA. Our results suggest that IS-COV cases are genetically similar to LAA and CES subtypes. Larger cohorts are needed to assess if the genetic factors in IS-COV cases are shared with the general population or specific to viral infection.
Assuntos
Aterosclerose , Isquemia Encefálica , COVID-19 , AVC Embólico , AVC Isquêmico , Acidente Vascular Cerebral , Humanos , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/genética , Isquemia Encefálica/complicações , Isquemia Encefálica/genética , COVID-19/complicações , COVID-19/genética , AVC Isquêmico/genética , ArtériasRESUMO
BACKGROUND: Stroke onset in women occurs later in life compared with men. The underlying mechanisms of these differences have not been established. Epigenetic clocks, based on DNA methylation (DNAm) profiles, are the most accurate biological age estimate. Epigenetic age acceleration (EAA) measures indicate whether an individual is biologically younger or older than expected. Our aim was to analyze whether sexual dichotomy at age of stroke onset is conditioned by EAA. METHODS: We used 2 DNAm datasets from whole blood samples of case-control genetic studies of ischemic stroke (IS), a discovery cohort of 374 IS patients (N women=163, N men=211), from GRECOS (Genotyping Recurrence Risk of Stroke) and SEDMAN (Dabigatran Study in the Early Phase of Stroke, New Neuroimaging Markers and Biomarkers) studies and a replication cohort of 981 IS patients (N women=411, N men=570) from BASICMAR register. We compared chronological age, 2 DNAm-based biomarkers of aging and intrinsic and extrinsic epigenetic age acceleration EAA (IEAA and extrinsic EAA, respectively), in IS as well as in individual IS etiologic subtypes. Horvath and Hannum epigenetic clocks were used to assess the aging rate. A proteomic study using the SOMAScan multiplex assay was performed on 26 samples analyzing 1305 proteins. RESULTS: Women present lower Hannum-extrinsic EAA values, whereas men have higher Hannum-extrinsic EAA values (women=-0.64, men=1.24, P=1.34×10-2); the same tendency was observed in the second cohort (women=-0.57, men=0.79, P=0.02). These differences seemed to be specific to cardioembolic and undetermined stroke subtypes. Additionally, 42 blood protein levels were associated with Hannum-extrinsic EAA (P<0.05), belonging to the immune effector process (P=1.54×10-6) and platelet degranulation (P<8.74×10-6) pathways. CONCLUSIONS: This study shows that sex-specific underlying biological mechanisms associated with stroke onset could be due to differences in biological age acceleration between men and women.
Assuntos
Epigênese Genética , AVC Isquêmico , Aceleração , Envelhecimento , Pré-Escolar , Metilação de DNA , Feminino , Marcadores Genéticos , Humanos , Masculino , ProteômicaRESUMO
Haemorrhagic transformation is a complication of recombinant tissue-plasminogen activator treatment. The most severe form, parenchymal haematoma, can result in neurological deterioration, disability, and death. Our objective was to identify single nucleotide variations associated with a risk of parenchymal haematoma following thrombolytic therapy in patients with acute ischaemic stroke. A fixed-effect genome-wide meta-analysis was performed combining two-stage genome-wide association studies (n = 1904). The discovery stage (three cohorts) comprised 1324 ischaemic stroke individuals, 5.4% of whom had a parenchymal haematoma. Genetic variants yielding a P-value < 0.05 1 × 10-5 were analysed in the validation stage (six cohorts), formed by 580 ischaemic stroke patients with 12.1% haemorrhagic events. All participants received recombinant tissue-plasminogen activator; cases were parenchymal haematoma type 1 or 2 as defined by the European Cooperative Acute Stroke Study (ECASS) criteria. Genome-wide significant findings (P < 5 × 10-8) were characterized by in silico functional annotation, gene expression, and DNA regulatory elements. We analysed 7â989â272 single nucleotide polymorphisms and identified a genome-wide association locus on chromosome 20 in the discovery cohort; functional annotation indicated that the ZBTB46 gene was driving the association for chromosome 20. The top single nucleotide polymorphism was rs76484331 in the ZBTB46 gene [P = 2.49 × 10-8; odds ratio (OR): 11.21; 95% confidence interval (CI): 4.82-26.55]. In the replication cohort (n = 580), the rs76484331 polymorphism was associated with parenchymal haematoma (P = 0.01), and the overall association after meta-analysis increased (P = 1.61 × 10-8; OR: 5.84; 95% CI: 3.16-10.76). ZBTB46 codes the zinc finger and BTB domain-containing protein 46 that acts as a transcription factor. In silico studies indicated that ZBTB46 is expressed in brain tissue by neurons and endothelial cells. Moreover, rs76484331 interacts with the promoter sites located at 20q13. In conclusion, we identified single nucleotide variants in the ZBTB46 gene associated with a higher risk of parenchymal haematoma following recombinant tissue-plasminogen activator treatment.
Assuntos
Hemorragia Cerebral/induzido quimicamente , Hemorragia Cerebral/genética , AVC Isquêmico/tratamento farmacológico , Polimorfismo de Nucleotídeo Único , Terapia Trombolítica/efeitos adversos , Ativador de Plasminogênio Tecidual/efeitos adversos , Fatores de Transcrição/genética , Idoso , Idoso de 80 Anos ou mais , Feminino , Fibrinolíticos/efeitos adversos , Estudo de Associação Genômica Ampla , Humanos , AVC Isquêmico/genética , Masculino , Pessoa de Meia-Idade , Resultado do TratamentoRESUMO
Ischaemic stroke is a complex disease with some degree of heritability. This means that heritability factors, such as genetics, could be risk factors for ischaemic stroke. The era of genome-wide studies has revealed some of these heritable risk factors, although the data generated by these studies may also be useful in other disciplines. Analysis of these data can be used to understand the biological mechanisms associated with stroke risk and stroke outcome, to determine the causality between stroke and other diseases without the need for expensive clinical trials, or to find potential drug targets with higher success rates than other strategies. In this review we will discuss several of the most relevant studies regarding the genetics of ischaemic stroke and the potential use of the data generated.
Assuntos
Isquemia Encefálica , AVC Isquêmico , Acidente Vascular Cerebral , Isquemia Encefálica/genética , Estudo de Associação Genômica Ampla , Humanos , Fatores de Risco , Acidente Vascular Cerebral/genéticaRESUMO
Small vessel strokes (SVS) and intracerebral haemorrhages (ICH) are acute outcomes of cerebral small vessel disease (SVD). Genetic studies combining both phenotypes have identified three loci associated with both traits. However, the genetic cis-regulation at the protein level associated with SVD has not been studied before. We performed a proteome-wide association study (PWAS) using FUSION to integrate a genome-wide association study (GWAS) and brain proteomic data to discover the common mechanisms regulating both SVS and ICH. Dorsolateral prefrontal cortex (dPFC) brain proteomes from the ROS/MAP study (N = 376 subjects and 1443 proteins) and the summary statistics for the SVS GWAS from the MEGASTROKE study (N = 237,511) and multi-trait analysis of GWAS (MTAG)-ICH−SVS from Chung et al. (N = 240,269) were selected. We performed PWAS and then a co-localization analysis with COLOC. The significant and nominal results were validated using a replication dPFC proteome (N = 152). The replicated results (q-value < 0.05) were further investigated for the causality relationship using summary data-based Mendelian randomization (SMR). One protein (ICA1L) was significantly associated with SVS (z-score = −4.42 and p-value = 9.6 × 10−6) and non-lobar ICH (z-score = −4.8 and p-value = 1.58 × 10−6) in the discovery PWAS, with a high co-localization posterior probability of 4. In the validation PWAS, ICA1L remained significantly associated with both traits. The SMR results for ICA1L indicated a causal association of protein expression levels in the brain with SVS (p-value = 3.66 × 10−5) and non-lobar ICH (p-value = 1.81 × 10−5). Our results show that the association of ICA1L with SVS and non-lobar ICH is conditioned by the cis-regulation of its protein levels in the brain.
Assuntos
Proteoma , Acidente Vascular Cerebral , Hemorragia Cerebral/complicações , Hemorragia Cerebral/genética , Estudo de Associação Genômica Ampla , Humanos , Proteoma/genética , Proteômica , Acidente Vascular Cerebral/etiologiaRESUMO
Background and Purpose: MMP (matrix metalloproteinase) levels have been widely associated with ischemic stroke risk and poststroke outcome. However, their role as a risk factor or as a subeffect because of ischemia is uncertain. Methods: We performed a literature search of genome-wide studies that evaluate serum/plasma levels of MMPs. We used a 2-sample Mendelian randomization approach to evaluate the causality of MMP levels on ischemic stroke risk or poststroke outcome, using 2 cohorts: MEGASTROKE (n=440 328) and GODs (n=1791). Results: Genome-wide association studies of MMP-1, MMP-8, and MMP-12 plasma/serum levels were evaluated. A significant association, which was also robust in the sensitivity analysis, was found with all ischemic strokes: MMP-12 (odds ratio=0.90 [95% CI, 0.860.94]; q value=7.43×10−5), and with subtypes of stroke, large-artery atherosclerosis: MMP-1 (odds ratio=0.95 [95% CI, 0.920.98]; q value=0.01) and MMP-12 (odds ratio=0.71 [95% CI, 0.650.77]; q value=5.11×10−14); small-vessel occlusion: MMP-8 (odds ratio=1.24 [95% CI, 1.061.45]; q value=0.03). No associations were found in relation to stroke outcome. Conclusions: Our study suggests a causal link between lower serum levels of MMP-12 and the risk of ischemic stroke, lower serum levels of MMP-1 and MMP-12 and the risk of large-artery stroke and higher serum levels of MMP-8 and the risk of lacunar stroke.
Assuntos
Estudo de Associação Genômica Ampla/métodos , AVC Isquêmico/sangue , Metaloproteinase 12 da Matriz/sangue , Metaloproteinase 1 da Matriz/sangue , Metaloproteinase 8 da Matriz/sangue , Análise da Randomização Mendeliana/métodos , Biomarcadores/sangue , Estudos de Coortes , Feminino , Humanos , AVC Isquêmico/genética , MasculinoRESUMO
BACKGROUND AND PURPOSE: Large-scale observational studies of acute ischemic stroke (AIS) promise to reveal mechanisms underlying cerebral ischemia. However, meaningful quantitative phenotypes attainable in large patient populations are needed. We characterize a dynamic metric of AIS instability, defined by change in National Institutes of Health Stroke Scale score (NIHSS) from baseline to 24 hours baseline to 24 hours (NIHSSbaseline - NIHSS24hours = ΔNIHSS6-24h), to examine its relevance to AIS mechanisms and long-term outcomes. METHODS: Patients with NIHSS prospectively recorded within 6 hours after onset and then 24 hours later were enrolled in the GENISIS study (Genetics of Early Neurological Instability After Ischemic Stroke). Stepwise linear regression determined variables that independently influenced ΔNIHSS6-24h. In a subcohort of tPA (alteplase)-treated patients with large vessel occlusion, the influence of early sustained recanalization and hemorrhagic transformation on ΔNIHSS6-24h was examined. Finally, the association of ΔNIHSS6-24h with 90-day favorable outcomes (modified Rankin Scale score 0-2) was assessed. Independent analysis was performed using data from the 2 NINDS-tPA stroke trials (National Institute of Neurological Disorders and Stroke rt-PA). RESULTS: For 2555 patients with AIS, median baseline NIHSS was 9 (interquartile range, 4-16), and median ΔNIHSS6-24h was 2 (interquartile range, 0-5). In a multivariable model, baseline NIHSS, tPA-treatment, age, glucose, site, and systolic blood pressure independently predicted ΔNIHSS6-24h (R2=0.15). In the large vessel occlusion subcohort, early sustained recanalization and hemorrhagic transformation increased the explained variance (R2=0.27), but much of the variance remained unexplained. ΔNIHSS6-24h had a significant and independent association with 90-day favorable outcome. For the subjects in the 2 NINDS-tPA trials, ΔNIHSS3-24h was similarly associated with 90-day outcomes. CONCLUSIONS: The dynamic phenotype, ΔNIHSS6-24h, captures both explained and unexplained mechanisms involved in AIS and is significantly and independently associated with long-term outcomes. Thus, ΔNIHSS6-24h promises to be an easily obtainable and meaningful quantitative phenotype for large-scale genomic studies of AIS.
Assuntos
AVC Isquêmico , Recuperação de Função Fisiológica , Índice de Gravidade de Doença , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-IdadeRESUMO
RATIONALE: Ischemic stroke is among the leading causes of adult disability. Part of the variability in functional outcome after stroke has been attributed to genetic factors but no locus has been consistently associated with stroke outcome. OBJECTIVE: Our aim was to identify genetic loci influencing the recovery process using accurate phenotyping to produce the largest GWAS (genome-wide association study) in ischemic stroke recovery to date. METHODS AND RESULTS: A 12-cohort, 2-phase (discovery-replication and joint) meta-analysis of GWAS included anterior-territory and previously independent ischemic stroke cases. Functional outcome was recorded using 3-month modified Rankin Scale. Analyses were adjusted for confounders such as discharge National Institutes of Health Stroke Scale. A gene-based burden test was performed. The discovery phase (n=1225) was followed by open (n=2482) and stringent joint-analyses (n=1791). Those cohorts with modified Rankin Scale recorded at time points other than 3-month or incomplete data on previous functional status were excluded in the stringent analyses. Novel variants in PATJ (Pals1-associated tight junction) gene were associated with worse functional outcome at 3-month after stroke. The top variant was rs76221407 (G allele, ß=0.40, P=1.70×10-9). CONCLUSIONS: Our results identify a set of common variants in PATJ gene associated with 3-month functional outcome at genome-wide significance level. Future studies should examine the role of PATJ in stroke recovery and consider stringent phenotyping to enrich the information captured to unveil additional stroke outcome loci.
Assuntos
Isquemia Encefálica/genética , Polimorfismo de Nucleotídeo Único , Acidente Vascular Cerebral/genética , Proteínas de Junções Íntimas/genética , Isquemia Encefálica/diagnóstico , Isquemia Encefálica/fisiopatologia , Isquemia Encefálica/reabilitação , Avaliação da Deficiência , Frequência do Gene , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Fenótipo , Recuperação de Função Fisiológica , Fatores de Risco , Acidente Vascular Cerebral/diagnóstico , Acidente Vascular Cerebral/fisiopatologia , Acidente Vascular Cerebral/terapia , Reabilitação do Acidente Vascular Cerebral , Resultado do TratamentoRESUMO
Background and Purpose- Immune cells play a key role in the first 24h poststroke (acute phase), being associated with stroke outcome. We aimed to find genetic risk factors associated with leukocyte counts during the acute phase of stroke. Methods- Ischemic stroke patients with leukocyte counts data during the first 24h were included. Genome-wide association study and gene expression studies were performed. Results- Our genome-wide association study, which included 2064 (Discovery) and 407 (Replication) patients, revealed a new locus (14q24.3) associated with leukocyte counts. After Joint analysis (n=2471) 5 more polymorphisms reached genome-wide significance (P<5×10-8). The 14q24.3 locus was associated with acute stroke outcome (rs112809786, P=0.036) and with ACOT1 and PTGR2 gene expression. Previous polymorphisms associated with leukocyte counts in general-population did not show any significance in our study. Conclusions- We have found the first locus associated with leukocyte counts in ischemic stroke, also associated with acute outcome. Genetic analysis of acute endophenotypes could be useful to find the genetic factors associated with stroke outcome. Our findings suggested a different modulation of immune cells in stroke compared with healthy conditions.
Assuntos
Isquemia Encefálica/imunologia , Contagem de Leucócitos , Leucócitos/imunologia , Acidente Vascular Cerebral/imunologia , Idoso , Idoso de 80 Anos ou mais , Isquemia Encefálica/genética , Cromossomos Humanos Par 14/genética , Feminino , Estudo de Associação Genômica Ampla , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Prognóstico , Acidente Vascular Cerebral/genéticaRESUMO
BACKGROUND AND PURPOSE: Vascular recurrence occurs in 11% of patients during the first year after ischemic stroke (IS) or transient ischemic attack. Clinical scores do not predict the whole vascular recurrence risk; therefore, we aimed to find genetic variants associated with recurrence that might improve the clinical predictive models in IS. METHODS: We analyzed 256 polymorphisms from 115 candidate genes in 3 patient cohorts comprising 4482 IS or transient ischemic attack patients. The discovery cohort was prospectively recruited and included 1494 patients, 6.2% of them developed a new IS during the first year of follow-up. Replication analysis was performed in 2988 patients using SNPlex or HumanOmni1-Quad technology. We generated a predictive model using Cox regression (GRECOS score [Genotyping Reurrence Risk of Stroke]) and generated risk groups using a classification tree method. RESULTS: The analyses revealed that rs1800801 in the MGP gene (hazard ratio, 1.33; P=9×10-03), a gene related to artery calcification, was associated with new IS during the first year of follow-up. This polymorphism was replicated in a Spanish cohort (n=1.305); however, it was not significantly associated in a North American cohort (n=1.683). The GRECOS score predicted new IS (P=3.2×10-09) and could classify patients, from low risk of stroke recurrence (1.9%) to high risk (12.6%). Moreover, the addition of genetic risk factors to the GRECOS score improves the prediction compared with previous Stroke Prognosis Instrument-II score (P=0.03). CONCLUSIONS: The use of genetics could be useful to estimate vascular recurrence risk after IS. Genetic variability in the MGP gene was associated with vascular recurrence in the Spanish population.
Assuntos
Isquemia Encefálica/genética , Doenças Cardiovasculares/genética , Acidente Vascular Cerebral/genética , Idoso , Isquemia Encefálica/diagnóstico , Doenças Cardiovasculares/diagnóstico , Estudos de Coortes , Feminino , Genótipo , Humanos , Ataque Isquêmico Transitório/diagnóstico , Ataque Isquêmico Transitório/genética , Masculino , América do Norte , Polimorfismo de Nucleotídeo Único , Prognóstico , Recidiva , Risco , Escócia , Espanha , Acidente Vascular Cerebral/diagnósticoRESUMO
CADASIL (cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy) is caused by mutations in the NOTCH3 gene, affecting the number of cysteines in the extracellular domain of the receptor, causing protein misfolding and receptor aggregation. The pathogenic role of cysteine-sparing NOTCH3 missense mutations in patients with typical clinical CADASIL syndrome is unknown. The aim of this article is to describe these mutations to clarify if any could be potentially pathogenic. Articles on cysteine-sparing NOTCH3 missense mutations in patients with clinical suspicion of CADASIL were reviewed. Mutations were considered potentially pathogenic if patients had: (a) typical clinical CADASIL syndrome; (b) diffuse white matter hyperintensities; (c) the 33 NOTCH3 exons analyzed; (d) mutations that were not polymorphisms; and (e) Granular osmiophilic material (GOM) deposits in the skin biopsy. Twenty-five different mutations were listed. Four fulfill the above criteria: p.R61W; p.R75P; p.D80G; and p.R213K. Patients carrying these mutations had typical clinical CADASIL syndrome and diffuse white matter hyperintensities, mostly without anterior temporal pole involvement. Cysteine-sparing NOTCH3 missense mutations are associated with typical clinical CADASIL syndrome and typical magnetic resonance imaging (MRI) findings, although with less involvement of the anterior temporal lobe. Hence, these mutations should be further studied to confirm their pathological role in CADASIL.
Assuntos
CADASIL/genética , Cisteína/genética , Mutação de Sentido Incorreto , Receptor Notch3/genética , Biópsia , CADASIL/diagnóstico por imagem , CADASIL/metabolismo , Cisteína/metabolismo , Bases de Dados Factuais , Éxons/genética , Humanos , Imageamento por Ressonância Magnética , Polimorfismo Genético , Receptor Notch3/metabolismoRESUMO
BACKGROUND AND PURPOSE: Clopidogrel is one of the most used antiplatelet drugs in patients with cardiovascular disease. However, 16% to 50% of patients have a high on-clopidogrel platelet reactivity and an increased risk of ischemic events. The pathogenesis of high on-treatment platelet reactivity in patients with stroke is only partially explained by genetic variations. This study aims to find differentially methylated sites across the genome associated with vascular recurrence in ischemic stroke patients treated with clopidogrel. METHODS: From a cohort of 1900 patients with ischemic stroke, we selected 42 patients treated with clopidogrel, including 21 with a recurrent vascular event and 21 without vascular recurrence during the first year of follow-up. Over 480 000 DNA methylation sites were analyzed across the genome. Differentially methylated CpG sites were identified by nonparametric testing using R. Replication analysis was performed in a new cohort of 191 subjects and results were correlated with platelet reactivity in a subset of 90 subjects using light transmission aggregometry. RESULTS: A total of 73 differentially methylated CpG sites (P<1×10(-05)) were identified; 3 of them were selected for further replication: cg03548645 (P=1.42×10(-05), TRAF3), cg09533145 (P=7.81×10(-06), ADAMTS2), and cg15107336 (P=1.89×10(-05), XRCC1). The cg03548645 CpG remained significant in the replication study (P=0.034), a deep analysis of this region revealed another methylation site associated with vascular recurrence, P=0.037. Lower cg03548645 (TRAF3) DNA methylation levels were correlated with an increased platelet aggregation (ρ=-0.29, P=0.0075). CONCLUSIONS: This study suggests for the first time that epigenetics may significantly contribute to the variability of clopidogrel response and recurrence of ischemic events in patients with stroke.
Assuntos
Isquemia Encefálica/genética , Isquemia Encefálica/prevenção & controle , Epigênese Genética/genética , Avaliação de Resultados em Cuidados de Saúde , Inibidores da Agregação Plaquetária/uso terapêutico , Acidente Vascular Cerebral/genética , Acidente Vascular Cerebral/prevenção & controle , Ticlopidina/análogos & derivados , Idoso , Idoso de 80 Anos ou mais , Clopidogrel , Ilhas de CpG , Metilação de DNA , Epigenômica , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Recidiva , Fator 3 Associado a Receptor de TNF , Ticlopidina/uso terapêuticoRESUMO
BACKGROUND AND PURPOSE: Despite great efforts by pharmacogenetic studies, the causes of aspirin failure to prevent the recurrence of ischemic events remain unclear. Our aim was to study whether epigenetics could be associated with the risk of vascular recurrence in aspirin-treated stroke patients. METHODS: We performed an epigenetic joint analysis study in 327 patients treated with aspirin. In the discovery stage, we performed a nested case-control study in 38 matched ischemic stroke patients in whom 450 000 methylation sites were analyzed. Nineteen patients presented vascular recurrence after stroke, and 19 matched patients did not present vascular recurrence during the first year of follow-up. In a second stage, 289 new patients were analyzed by EpiTYPER. RESULTS: The following 3 differentially methylated candidate CpG sites, were identified in the discovery stage and analyzed in the second stage: cg26039762 (P=9.69×10(-06), RAF1), cg04985020 (P=3.47×10(-03), PPM1A), and cg08419850 (P=3.47×10(-03), KCNQ1). Joint analysis identified an epigenome-wide association for cg04985020 (PPM1A; P=1.78×10(-07)), with vascular recurrence in patients treated with aspirin. CONCLUSIONS: The pattern of differential methylation in PPM1A is associated with vascular recurrence in aspirin-treated stroke patients.
Assuntos
Aspirina/uso terapêutico , Isquemia Encefálica/genética , Metilação de DNA , Inibidores da Agregação Plaquetária/uso terapêutico , Proteína Fosfatase 2C/genética , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/epidemiologia , Ilhas de CpG , Seguimentos , Estudos de Associação Genética , Humanos , Canal de Potássio KCNQ1/genética , Proteínas Proto-Oncogênicas c-raf/genética , Recidiva , Falha de TratamentoRESUMO
Decades of pharmacogenetic research have revealed genetic biomarkers of clinical response to antipsychotics. Genetic variants in antipsychotic targets, dopamine and serotonin receptors in particular, and in metabolic enzymes have been associated with the efficacy and toxicity of antipsychotic treatments. However, genetic prediction of antipsychotic response based on these biomarkers is far from accurate. Despite the clinical validity of these findings, the clinical utility remains unclear. Nevertheless, genetic information on CYP metabolic enzymes responsible for the biotransformation of most commercially available antipsychotics has proven to be effective for the personalisation of clinical dosing, resulting in a reduction of induced side effects and in an increase in efficacy. However, pharmacogenetic information is rarely used in psychiatric settings as a prescription aid. Lack of studies on cost-effectiveness, absence of clinical guidelines based on pharmacogenetic biomarkers for several commonly used antipsychotics, the cost of genetic testing and the delay in results delivery hamper the implementation of pharmacogenetic interventions in clinical settings. This narrative review will comment on the existing pharmacogenetic information, the clinical utility of pharmacogenetic findings, and their current and future implementations.
RESUMO
BACKGROUND: The recently discovered glymphatic system may support the removal of neurotoxic proteins, mainly during sleep, that are associated with neurodegenerative diseases such as Alzheimer's and Parkinson's Disease. Diffusion tensor image analysis along the perivascular space (DTI-ALPS) has been suggested as a method to index the health of glymphatic system (with higher values indicating a more intact glymphatic system). Indeed, in small-scale studies the DTI-ALPS index has been shown to correlate with age, cognitive health, and sleep, and is higher in females than males. OBJECTIVE: To determine whether these relationships are stable we replicated previous findings associating the DTI-ALPS index with demographic, sleep-related, and cognitive markers in a large sample of participants from the UK Biobank. METHODS: We calculated the DTI-ALPS index in UK Biobank participants (n = 17723). Using Bayesian and Frequentist analysis approaches, we replicate previously reported relationships between the DTI-ALPS index. RESULTS: We found the predicted associations between the DTI-ALPS index and age, longest uninterrupted sleep window (LUSWT) on a typical night, cognitive performance, and sex. However, these effects were substantially smaller than those found in previous studies. Parameter estimates from this study may be used as priors in subsequent studies using a Bayesian approach. These results suggest that the DTI-ALPS index is consistently, and therefore predictably, associated with demographics, LUWST, and cognition. CONCLUSION: We propose that the metric, calculated for the first time in a large-scale, population-based cohort, is a stable measure, but one for which stronger links to glymphatic system function are needed before it can be used to understand the relationships between glymphatic system function and health outcomes reported in the UK Biobank.
Assuntos
Bancos de Espécimes Biológicos , Imagem de Tensor de Difusão , Sistema Glinfático , Humanos , Imagem de Tensor de Difusão/métodos , Masculino , Feminino , Reino Unido , Sistema Glinfático/diagnóstico por imagem , Pessoa de Meia-Idade , Idoso , Sono/fisiologia , Cognição/fisiologia , Teorema de Bayes , Biobanco do Reino UnidoRESUMO
BACKGROUND AND OBJECTIVES: Genome-wide association studies (GWASs) have only 2 loci associated with spontaneous intracerebral hemorrhage (ICH): APOE for lobar and 1q22 for nonlobar ICH. We aimed to discover new loci through an analysis that combines correlated traits (multi-trait analysis of GWAS [MTAG]) and explore a gene-based analysis, transcriptome-wide association study (TWAS), and proteome-wide association study (PWAS) to understand the biological mechanisms of spontaneous ICH providing potential therapeutic targets. METHODS: We use the published MTAG of ICH (patients with spontaneous intraparenchymal bleeding) and small-vessel ischemic stroke. For all ICH, lobar ICH, and nonlobar ICH, a pairwise MTAG combined ICH with traits related to cardiovascular risk factors, cerebrovascular diseases, or Alzheimer disease (AD). For the analysis, we assembled those traits with a genetic correlation ≥0.3. A new MTAG combining multiple traits was performed with those traits whose pairwise MTAG yielded new GWAS-significant single nucleotide polymorphisms (SNPs), with a posterior-probability of model 3 (GWAS-pairwise) ≥0.6. We perform TWAS and PWAS that correlate the genetic component of expression or protein levels with the genetic component of a trait. We use the ICH cohort from UK Biobank as replication. RESULTS: For all ICH (1,543 ICH, 1,711 controls), the mean age was 72 ± 2 in cases and 70 ± 2 in controls, and half of them were women. Replication cohort: 700 ICH and 399,717 controls. Novel loci were found only for all ICH (the trait containing lobar and nonlobar ICH), combining data of ICH and small vessel stroke, white matter hyperintensities volume, fractional anisotropy, mean diffusivity, and AD. We replicated 6 SNPs belonging to 2q33.2 (ICA1L, ß = 0.20, SE = 0.03, p value = 8.91 × 10-12), 10q24.33 (OBFC1, ß = -0.12, SE = 0.02, p value = 1.67 × 10-8), 13q34 (COL4A2, ß = 0.02, SE = 0.02, p value = 2.34 × 10-11), and 19q13.32 (APOC1, ß = -0.19, SE = 0.03, p value = 1.38 × 10-12; APOE, ß = 0.21, SE = 0.03, p value = 2.70 × 10-11; PVRL2:CTB-129P6.4, ß = 0.15, SE = 0.03, p value = 1.38 × 10-8); 2 genes (SH3PXD2A, Z-score = 4.83, p value = 6.67 × 10-7; and APOC1, Z-score: = 5.11, p value = 1.60 × 10-7); and ICA1L transcript (Z-score = 6.8, p value = 9.1 × 10-12) and protein levels (Z-score = -5.8, p value = 6.7 × 10-9). DISCUSSION: Our results reinforce the role of APOE in ICH risk, replicate previous ICH-associated loci (2q33 and 13q34), and point to new ICH associations with OBFC1, PVRL2:CTB-129P6.4, APOC1, and SH3PXD2A. Our study used data from European subjects, our main limitation. These molecules could be potential targets for future studies for modulating ICH risk.