Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Genome Res ; 32(10): 1941-1951, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36180231

RESUMO

Gibbons are the most speciose family of living apes, characterized by a diverse chromosome number and rapid rate of large-scale rearrangements. Here we performed single-cell template strand sequencing (Strand-seq), molecular cytogenetics, and deep in silico analysis of a southern white-cheeked gibbon genome, providing the first comprehensive map of 238 previously hidden small-scale inversions. We determined that more than half are gibbon specific, at least fivefold higher than shown for other primate lineage-specific inversions, with a significantly high number of small heterozygous inversions, suggesting that accelerated evolution of inversions may have played a role in the high sympatric diversity of gibbons. Although the precise mechanisms underlying these inversions are not yet understood, it is clear that segmental duplication-mediated NAHR only accounts for a small fraction of events. Several genomic features, including gene density and repeat (e.g., LINE-1) content, might render these regions more break-prone and susceptible to inversion formation. In the attempt to characterize interspecific variation between southern and northern white-cheeked gibbons, we identify several large assembly errors in the current GGSC Nleu3.0/nomLeu3 reference genome comprising more than 49 megabases of DNA. Finally, we provide a list of 182 candidate genes potentially involved in gibbon diversification and speciation.


Assuntos
Hominidae , Hylobates , Animais , Hylobates/genética , Genoma , Primatas/genética , Inversão Cromossômica/genética , Cromossomos , Hominidae/genética
2.
Chromosoma ; 131(4): 239-251, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35978051

RESUMO

The maintenance of genome integrity is ensured by proper chromosome inheritance during mitotic and meiotic cell divisions. The chromosomal counterpart responsible for chromosome segregation to daughter cells is the centromere, at which the spindle apparatus attaches through the kinetochore. Although all mammalian centromeres are primarily composed of megabase-long repetitive sequences, satellite-free human neocentromeres have been described. Neocentromeres and evolutionary new centromeres have revolutionized traditional knowledge about centromeres. Over the past 20 years, insights have been gained into their organization, but in spite of these advancements, the mechanisms underlying their formation and evolution are still unclear. Today, through modern and increasingly accessible genome editing and long-read sequencing techniques, research in this area is undergoing a sudden acceleration. In this article, we describe the primary sequence of a previously described human chromosome 3 neocentromere and observe its possible evolution and repair results after a chromosome breakage induced through CRISPR-Cas9 technologies. Our data represent an exciting advancement in the field of centromere/neocentromere evolution and chromosome stability.


Assuntos
Sistemas CRISPR-Cas , Centrômero , Humanos , Animais , Centrômero/genética , Cinetocoros , Segregação de Cromossomos , Quebra Cromossômica , Mamíferos
3.
PLoS Genet ; 15(3): e1008075, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30917130

RESUMO

Human chromosome 15q25 is involved in several disease-associated structural rearrangements, including microdeletions and chromosomal markers with inverted duplications. Using comparative fluorescence in situ hybridization, strand-sequencing, single-molecule, real-time sequencing and Bionano optical mapping analyses, we investigated the organization of the 15q25 region in human and nonhuman primates. We found that two independent inversions occurred in this region after the fission event that gave rise to phylogenetic chromosomes XIV and XV in humans and great apes. One of these inversions is still polymorphic in the human population today and may confer differential susceptibility to 15q25 microdeletions and inverted duplications. The inversion breakpoints map within segmental duplications containing core duplicons of the GOLGA gene family and correspond to the site of an ancestral centromere, which became inactivated about 25 million years ago. The inactivation of this centromere likely released segmental duplications from recombination repression typical of centromeric regions. We hypothesize that this increased the frequency of ectopic recombination creating a hotspot of hominid inversions where dispersed GOLGA core elements now predispose this region to recurrent genomic rearrangements associated with disease.


Assuntos
Inversão Cromossômica , Cromossomos Humanos Par 15/genética , Duplicações Segmentares Genômicas , Animais , Autoantígenos/genética , Instabilidade Cromossômica , Evolução Molecular , Dosagem de Genes , Rearranjo Gênico , Variação Genética , Proteínas da Matriz do Complexo de Golgi/genética , Hominidae/genética , Humanos , Família Multigênica , Filogenia , Primatas/genética , Recombinação Genética , Especificidade da Espécie
4.
Genome Res ; 28(6): 910-920, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29776991

RESUMO

For many years, inversions have been proposed to be a direct driving force in speciation since they suppress recombination when heterozygous. Inversions are the most common large-scale differences among humans and great apes. Nevertheless, they represent large events easily distinguishable by classical cytogenetics, whose resolution, however, is limited. Here, we performed a genome-wide comparison between human, great ape, and macaque genomes using the net alignments for the most recent releases of genome assemblies. We identified a total of 156 putative inversions, between 103 kb and 91 Mb, corresponding to 136 human loci. Combining literature, sequence, and experimental analyses, we analyzed 109 of these loci and found 67 regions inverted in one or multiple primates, including 28 newly identified inversions. These events overlap with 81 human genes at their breakpoints, and seven correspond to sites of recurrent rearrangements associated with human disease. This work doubles the number of validated primate inversions larger than 100 kb, beyond what was previously documented. We identified 74 sites of errors, where the sequence has been assembled in the wrong orientation, in the reference genomes analyzed. Our data serve two purposes: First, we generated a map of evolutionary inversions in these genomes representing a resource for interrogating differences among these species at a functional level; second, we provide a list of misassembled regions in these primate genomes, involving over 300 Mb of DNA and 1978 human genes. Accurately annotating these regions in the genome references has immediate applications for evolutionary and biomedical studies on primates.


Assuntos
Inversão Cromossômica/genética , Genoma Humano/genética , Primatas/genética , Inversão de Sequência/genética , Animais , Evolução Molecular , Humanos , Anotação de Sequência Molecular , Pan troglodytes/genética
5.
Mol Phylogenet Evol ; 158: 107090, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33545274

RESUMO

The number of reports concerning horizontal transposon transfers (HTT) in metazoan species is considerably increased, alongside with the exponential growth of genomic sequence data However, our understanding of the mechanisms of such phenomenon is still at an early stage. Nematodes constitute an animal phylum successfully adapted to almost every ecosystem and for this reason could potentially contribute to spreading the genetic information through horizontal transfer. To date, few studies describe HTT of nematode retrotransposons. This is due to the lack of annotation of transposable elements in the sequenced nematode genomes, especially DNA transposons, which are acknowledged as the best horizontal travelers among mobile sequences. We have therefore started a survey of DNA transposons and their possible involvement in HTT in sequenced nematode genomes. Here, we describe 83 new Tc1/mariner elements distributed in 17 nematode species. Among them, nine families were possibly horizontally transferred between nematodes and the most diverse animal species, including ants as preferred partner of HTT. The results obtained suggest that HTT events involving nematodes Tc1/mariner elements are not uncommon, and that nematodes could have a possible role as transposon reservoir that, in turn, can be redistributed among animal genomes. Overall, this could be relevant to understand how the inter-species genetic flows shape the landscape of genetic variation of organisms inhabiting specific environmental communities.


Assuntos
Elementos de DNA Transponíveis/genética , Genoma , Nematoides/genética , Animais , Evolução Biológica , Bases de Dados Genéticas , Transferência Genética Horizontal , Nematoides/classificação , Filogenia , RNA Ribossômico 18S/classificação , RNA Ribossômico 18S/genética
6.
Am J Phys Anthropol ; 171(4): 671-682, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31957883

RESUMO

OBJECTIVES: The 3' regulatory region of the immunoglobulin heavy chain gene (IGH) includes the HS1.2 enhancer displaying length polymorphism with four known variants. The goal of the research was to provide an overview of this variability and of its evolutionary significance across human populations. MATERIALS AND METHODS: We compiled published and original data on HS1.2 polymorphism in 3,100 subjects from 26 human populations. Moreover, we imputed the haplotypic arrangement of the HS1.2 region in the 1000 Genomes Project (1KGP). In this dataset, imputation could also be obtained for the G1m-G3m allotype by virtue of the precise correspondence between serological types and amino acid (and DNA) substitutions in IGHG1 and IGHG3. RESULTS: HS1.2 variant frequencies displayed similar patterns of continental partitioning as those reported in the literature for the physically neighboring IGHG1-IGHG3 system. The 1KGP data revealed that linkage disequilibrium (LD) can explain the spread of joint HS1.2-IGHG1-IGHG3 associations across continents and within continental populations, with stronger LD out of Africa and the features of an evolutionarily stable genomic block with differential expression in lymphoblastoid cell lines. DISCUSSION: Strong population structuring involves at least the entire 70 kb genomic region here considered, due to the tight LD which maintained HS1.2, IGHG1, and IGHG3 in nonrandom arrangements. This might be key to better understand the evolutionary path of the entire genomic region driven by immune response capabilities, during the formation of continental gene pools.


Assuntos
Cadeias Pesadas de Imunoglobulinas/genética , Desequilíbrio de Ligação , Polimorfismo Genético , Grupos Raciais/genética , Feminino , Haplótipos , Humanos , Alótipos Gm de Imunoglobulina/genética , Masculino
7.
Plant J ; 88(4): 648-661, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27419916

RESUMO

Grapevine (Vitis vinifera L.) is one of the world's most important crop plants, which is of large economic value for fruit and wine production. There is much interest in identifying genomic variations and their functional effects on inter-varietal, phenotypic differences. Using an approach developed for the analysis of human and mammalian genomes, which combines high-throughput sequencing, array comparative genomic hybridization, fluorescent in situ hybridization and quantitative PCR, we created an inter-varietal atlas of structural variations and single nucleotide variants (SNVs) for the grapevine genome analyzing four economically and genetically relevant table grapevine varieties. We found 4.8 million SNVs and detected 8% of the grapevine genome to be affected by genomic variations. We identified more than 700 copy number variation (CNV) regions and more than 2000 genes subjected to CNV as potential candidates for phenotypic differences between varieties.


Assuntos
Genoma de Planta/genética , Vitis/genética , Hibridização Genômica Comparativa/métodos , Variações do Número de Cópias de DNA/genética , Hibridização in Situ Fluorescente , Reação em Cadeia da Polimerase
8.
Biopolymers ; 105(11): 768-78, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27287611

RESUMO

Regulatory regions in the genome can act through a variety of mechanisms that range from the occurrence of histone modifications to the presence of protein-binding loci for self-annealing sequences. The final result is often the induction of a conformational change of the DNA double helix, which alters the accessibility of a region to transcription factors and consequently gene expression. A ∼300 kb regulatory region on chromosome 14 at the 3' end (3'RR) of immunoglobulin (Ig) heavy-chain genes shows very peculiar features, conserved in mammals, including enhancers and transcription factor binding sites. In primates, the 3'RR is present in two copies, both having a central enhancer named hs1.2. We previously demonstrated the association between different hs1.2 alleles and Ig plasma levels in immunopathology. Here, we present the analysis of a putative G-quadruplex structure (tetraplex) consensus site embedded in a variable number tandem repeat (one to four copies) of hs1.2 that is a distinctive element among the enhancer alleles, and an investigation of its three-dimensional structure using bioinformatics and spectroscopic approaches. We suggest that both the role of the enhancer and the alternative effect of the hs1.2 alleles may be achieved through their peculiar three-dimensional-conformational rearrangement. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 768-778, 2016.


Assuntos
Alelos , Elementos Facilitadores Genéticos , Quadruplex G , Imunoglobulina G/genética , Cadeias Pesadas de Imunoglobulinas/genética , Animais , Humanos , Imunoglobulina G/biossíntese , Cadeias Pesadas de Imunoglobulinas/biossíntese
9.
Nucleic Acids Res ; 42(14): 9131-45, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25034695

RESUMO

The mechanism for generating double minutes chromosomes (dmin) and homogeneously staining regions (hsr) in cancer is still poorly understood. Through an integrated approach combining next-generation sequencing, single nucleotide polymorphism array, fluorescent in situ hybridization and polymerase chain reaction-based techniques, we inferred the fine structure of MYC-containing dmin/hsr amplicons harboring sequences from several different chromosomes in seven tumor cell lines, and characterized an unprecedented number of hsr insertion sites. Local chromosome shattering involving a single-step catastrophic event (chromothripsis) was recently proposed to explain clustered chromosomal rearrangements and genomic amplifications in cancer. Our bioinformatics analyses based on the listed criteria to define chromothripsis led us to exclude it as the driving force underlying amplicon genesis in our samples. Instead, the finding of coexisting heterogeneous amplicons, differing in their complexity and chromosome content, in cell lines derived from the same tumor indicated the occurrence of a multi-step evolutionary process in the genesis of dmin/hsr. Our integrated approach allowed us to gather a complete view of the complex chromosome rearrangements occurring within MYC amplicons, suggesting that more than one model may be invoked to explain the origin of dmin/hsr in cancer. Finally, we identified PVT1 as a target of fusion events, confirming its role as breakpoint hotspot in MYC amplification.


Assuntos
Cromossomos Humanos/química , Amplificação de Genes , Genes Neoplásicos , Genes myc , Neoplasias/genética , Linhagem Celular Tumoral , Evolução Molecular , Expressão Gênica , Fusão Gênica , Genoma Humano , Células HL-60 , Humanos
10.
Genes Chromosomes Cancer ; 54(3): 156-67, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25421174

RESUMO

Gene amplification is relatively common in tumors. In certain subtypes of sarcoma, it often occurs in the form of ring and/or giant rod-shaped marker (RGM) chromosomes whose mitotic stability is frequently rescued by ectopic novel centromeres (neocentromeres). Little is known about the origin and structure of these RGM chromosomes, including how they arise, their internal organization, and which sequences underlie the neocentromeres. To address these questions, 42 sarcomas with RGM chromosomes were investigated to detect regions prone to double strand breaks and possible functional or structural constraints driving the amplification process. We found nine breakpoint cluster regions potentially involved in the genesis of RGM chromosomes, which turned out to be significantly enriched in poly-pyrimidine traits. Some of the clusters were located close to genes already known to be relevant for sarcomas, thus indicating a potential functional constraint, while others mapped to transcriptionally inactive chromatin domains enriched in heterochromatic sites. Of note, five neocentromeres were identified after analyzing 13 of the cases by fluorescent in situ hybridization. ChIP-on-chip analysis with antibodies against the centromeric protein CENP-A showed that they were a patchwork of small genomic segments derived from different chromosomes, likely joint to form a contiguous sequence during the amplification process.


Assuntos
Pontos de Quebra do Cromossomo , Cromossomos em Anel , Sarcoma/genética , Centrômero/genética , Epigênese Genética , Amplificação de Genes/genética , Humanos , Hibridização in Situ Fluorescente , Sarcoma/ultraestrutura
11.
BMC Immunol ; 15: 45, 2014 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-25391515

RESUMO

BACKGROUND: In the immune system, the serum levels of immunoglobulin (Ig) increase gradually during ageing. Through B cell development, the Ig heavy chain expression is modulated by a regulatory region at the 3' of the constant alpha gene (3'RR), in single copy in rodents and, due to a large duplication, in two copies in apes. The human 3'RR1 and 3'RR2 are both characterized by three enhancers, the central of which, namely hs1.2, is highly polymorphic. Human hs1.2 has four different variants with unique binding sites for transcription factors (e.g. NF-kB and SP1) and shows variable allelic frequencies in populations with immune disorders. In previous works, we have reported that in several autoimmune diseases the *2 allele of hs1.2 is genetically associated to high level of IgM in peripheral blood. In subjects with altered levels of circulating Ig, an increased level was associated to *2 allele of hs1.2 and low levels corresponded to high frequency of *1 allele. RESULTS: We have correlated the allelic frequencies of hs1.2 with IgM, IgG and IgA serum concentrations in two cohorts of healthy people of different age and after three years follow-up in children homozygous for the allele. Here we show that when the expression levels of Ig in children are low and medium, the frequencies of *1 and *2 alleles are the same. Instead, when the Ig expression levels are high, there is a significantly higher frequency of the allele *2. The follow-up of children homozygous for *1 and *2 alleles showed that the increase or decrease of circulating Ig was not dependent on the number of circulating mature B cells. CONCLUSIONS: These data support the idea that under physiologic condition there is a switch of regulative pathways involved in the maturation of Ig during ageing. This mechanism is evidenced by hs1.2 variants that in children but not in adults participate to Ig production, coordinating the three class levels.


Assuntos
Elementos Facilitadores Genéticos/genética , Cadeias alfa de Imunoglobulina/genética , Polimorfismo Genético , Adulto , Criança , Pré-Escolar , Feminino , Seguimentos , Frequência do Gene , Humanos , Cadeias alfa de Imunoglobulina/sangue , Masculino
12.
J Basic Microbiol ; 54(11): 1210-21, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24810619

RESUMO

The phytopathogen Pseudomonas syringae pv. actinidiae (Psa) is the causal agent of bacterial canker of kiwifruit. In the last years, it has caused severe economic losses to Actinidia spp. cultivations, mainly in Italy and New Zealand. Conventional strategies adopted did not provide adequate control of infection. Phage therapy may be a realistic and safe answer to the urgent need for novel antibacterial agents aiming to control this bacterial pathogen. In this study, we described the isolation and characterization of two bacteriophages able to specifically infect Psa. φPSA1, a member of the Siphoviridae family, is a temperate phage with a narrow host range, a long latency, and a burst size of 178; φPSA2 is a lytic phage of Podoviridae family with a broader host range, a short latency, a burst size of 92 and a higher bactericidal activity as determined by the TOD value. The genomic sequence of φPSA1 has a length of 51,090 bp and a low sequence homology with the other siphophages, whereas φPSA2 has a length of 40 472 bp with a 98% homology with Pseudomonas putida bacteriophage gh-1. Of the two phages examined, φPSA2 may be considered as a candidate for phage therapy of kiwifruit disease, while φPSA1 seems specific toward the recent outbreak's isolates and could be useful for Psa typing.


Assuntos
Actinidia/microbiologia , Fagos de Pseudomonas/isolamento & purificação , Pseudomonas syringae/virologia , Bacteriólise , DNA Viral/química , DNA Viral/genética , Genoma Viral , Especificidade de Hospedeiro , Itália , Lisogenia , Viabilidade Microbiana , Dados de Sequência Molecular , Nova Zelândia , Doenças das Plantas/microbiologia , Podoviridae/crescimento & desenvolvimento , Podoviridae/isolamento & purificação , Podoviridae/fisiologia , Fagos de Pseudomonas/classificação , Fagos de Pseudomonas/crescimento & desenvolvimento , Fagos de Pseudomonas/fisiologia , Análise de Sequência de DNA , Homologia de Sequência , Siphoviridae/crescimento & desenvolvimento , Siphoviridae/isolamento & purificação , Siphoviridae/fisiologia
13.
Genome Res ; 20(9): 1198-206, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20631050

RESUMO

Double minutes (dmin) and homogeneously staining regions (hsr) are the cytogenetic hallmarks of genomic amplification in cancer. Different mechanisms have been proposed to explain their genesis. Recently, our group showed that the MYC-containing dmin in leukemia cases arise by excision and amplification (episome model). In the present paper we investigated 10 cell lines from solid tumors showing MYCN amplification as dmin or hsr. Particularly revealing results were provided by the two subclones of the neuroblastoma cell line STA-NB-10, one showing dmin-only and the second hsr-only amplification. Both subclones showed a deletion, at 2p24.3, whose extension matched the amplicon extension. Additionally, the amplicon structure of the dmin and hsr forms was identical. This strongly argues that the episome model, already demonstrated in leukemias, applies to solid tumors as well, and that dmin and hsr are two faces of the same coin. The organization of the duplicated segments varied from very simple (no apparent changes from the normal sequence) to very complex. MYCN was always overexpressed (significantly overexpressed in three cases). The fusion junctions, always mediated by nonhomologous end joining, occasionally juxtaposed truncated genes in the same transcriptional orientation. Fusion transcripts involving NBAS (also known as NAG), FAM49A, BC035112 (also known as NCRNA00276), and SMC6 genes were indeed detected, although their role in the context of the tumor is not clear.


Assuntos
Amplificação de Genes , Genes myc , Neoplasias/genética , Citogenética , Hibridização in Situ Fluorescente , Cariotipagem , Dados de Sequência Molecular , Deleção de Sequência
14.
Front Immunol ; 14: 996119, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36817426

RESUMO

One gene, the immunoglobulin heavy chain (IgH) gene, is responsible for the expression of all the different antibody isotypes. Transcriptional regulation of the IgH gene is complex and involves several regulatory elements including a large element at the 3' end of the IgH gene locus (3'RR). Animal models have demonstrated an essential role of the 3'RR in the ability of B cells to express high affinity antibodies and to express different antibody classes. Additionally, environmental chemicals such as aryl hydrocarbon receptor (AhR) ligands modulate mouse 3'RR activity that mirrors the effects of these chemicals on antibody production and immunocompetence in mouse models. Although first discovered as a mediator of the toxicity induced by the high affinity ligand 2,3,7,8-tetracholordibenzo-p-dioxin (dioxin), understanding of the AhR has expanded to a physiological role in preserving homeostasis and maintaining immunocompetence. We posit that the AhR also plays a role in human antibody production and that the 3'RR is not only an IgH regulatory node but also an environmental sensor receiving signals through intrinsic and extrinsic pathways, including the AhR. This review will 1) highlight the emerging role of the AhR as a key transducer between environmental signals and altered immune function; 2) examine the current state of knowledge regarding IgH gene regulation and the role of the AhR in modulation of Ig production; 3) describe the evolution of the IgH gene that resulted in species and population differences; and 4) explore the evidence supporting the environmental sensing capacity of the 3'RR and the AhR as a transducer of these cues. This review will also underscore the need for studies focused on human models due to the premise that understanding genetic differences in the human population and the signaling pathways that converge at the 3'RR will provide valuable insight into individual sensitivities to environmental factors and antibody-mediated disease conditions, including emerging infections such as SARS-CoV-2.


Assuntos
COVID-19 , Receptores de Hidrocarboneto Arílico , Camundongos , Animais , Humanos , Cadeias Pesadas de Imunoglobulinas/genética , Sinais (Psicologia) , SARS-CoV-2/metabolismo
15.
Microbiologyopen ; 12(2): e1339, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37186230

RESUMO

The Clustered Regularly Interspaced Short Palindromic Repeats and CRISPR-associated proteins (CRISPR-Cas) system of prokaryotes is an adaptative immune defense mechanism to protect themselves from invading genetic elements (e.g., phages and plasmids). Studies that describe the genetic organization of these prokaryotic systems have mainly reported on the Enterobacteriaceae family (now reorganized within the order of Enterobacterales). For some genera, data on CRISPR-Cas systems remain poor, as in the case of Serratia (now part of the Yersiniaceae family) where data are limited to a few genomes of the species marcescens. This study describes the detection, in silico, of CRISPR loci in 146 Serratia complete genomes and 336 high-quality assemblies available for the species ficaria, fonticola, grimesii, inhibens, liquefaciens, marcescens, nematodiphila, odorifera, oryzae, plymuthica, proteomaculans, quinivorans, rubidaea, symbiotica, and ureilytica. Apart from subtypes I-E and I-F1 which had previously been identified in marcescens, we report that of I-C and the I-E unique locus 1, I-E*, and I-F1 unique locus 1. Analysis of the genomic contexts for CRISPR loci revealed mdtN-phnP as the region mostly shared (grimesii, inhibens, marcescens, nematodiphila, plymuthica, rubidaea, and Serratia sp.). Three new contexts detected in genomes of rubidaea and fonticola (puu genes-mnmA) and rubidaea (osmE-soxG and ampC-yebZ) were also found. The plasmid and/or phage origin of spacers was also established.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Serratia , Serratia/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Plasmídeos/genética , Biologia Computacional , Genômica
16.
Gene ; 862: 147254, 2023 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-36764340

RESUMO

BACKGROUND: Several studies in animal models have demonstrated the role of the 3' Regulatory Region (3'RR) in the B cell maturation in mammals. In healthy humans, the concentration of each class of circulating immunoglobulins (Igs) has stable but different levels, due to several control mechanisms that also involve a duplicated version of the 3'RR on the chromosome 14 (chr14). The classes' equilibrium can be altered during infections and in other pathological conditions. MATERIAL AND METHODS: We studied the concentrations of IgA, IgM, IgG classes and IgG subclasses in a cohort of 1235 people having immunoglobulin concentrations within normal range to determine the presence of any correlation between the Igs serum concentrations, age and ratio among Ig classes and IgG subclasses in healthy humans. Furthermore, we assessed the concentrations of IgE and the allelic frequency of 3'RR1 hs1.2 enhancer in a group of 115 subjects with high levels of circulating IgE due to acute exacerbation of allergic asthma and in a control group of 118 healthy subjects. RESULTS: In both children and adult subjects, the concentrations of the four IgG subclasses decreased from IgG1 to IgG4. Furthermore, the 3'RR1 enhancer hs1.2 alleles contribute to the control of the IgG subclasses levels, but it does not affect the IgE levels. CONCLUSION: The 3'RR1 controls IgG and IgE through different mechanisms, only in the IgG case involving the hs1.2 alleles. Thus, considering the IgH constant genes loci on the chromosome 14 and the multiple steps of switch that rearrange the whole region, we found that in humans the classes of Igs are modulated by mechanisms involving a complex interaction and transition between 3'RR1 and 3'RR2, also in physiological conditions.


Assuntos
Imunoglobulinas , Sequências Reguladoras de Ácido Nucleico , Adulto , Criança , Animais , Humanos , Imunoglobulinas/genética , Frequência do Gene , Imunoglobulina G , Mamíferos/genética , Cabras/genética , Imunoglobulina E
17.
Ann Rheum Dis ; 71(8): 1309-15, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22294636

RESUMO

OBJECTIVE: To determine whether the allelic frequency variation of the HS1.2 enhancer of the immunoglobulin heavy chain (IgH) 3' regulatory region (3'RR-1) locus represents a risk factor for systemic lupus erythematosus (SLE) and to identify a possible functional difference in the two most frequent alleles (*1 and *2) in binding nuclear factor- κB (NF-κB) and Sp1. METHODS: The frequency of the enhancer HS1.2 alleles was determined in two cohorts of patients with SLE (n=293) and in 1185 controls. Electrophoretic mobility shift assays (EMSA) were carried out with B cell nuclear extracts with different probes of HS1.2 alleles *1 and *2 to map the consensus binding sites of the nuclear factors. A confirmatory cohort of 121 patients with SLE was also included. RESULTS: The frequency of allele *2 of the HS1.2 enhancer was significantly increased in patients with SLE compared with controls (OR 1.60, 95% CI 1.33 to 1.92, p<0.001). EMSA experiments showed the presence of the Sp1 binding site in both alleles whereas only allele *2 carried the consensus for the NF-κB factor. The presence versus absence of allele *2 in patients with SLE correlated with a higher concentration of IgM levels and with the expression of B cell activating factor receptor (BAFF-R). CONCLUSIONS: The increased frequency of allele *2 in patients with SLE identifies a new genetic risk factor for SLE. A possible biological effect of the polymorphism could be the difference observed in the localisation of an NF-κB binding site which is specific for allele *2 and absent in allele *1. These observations suggest a functional effect of the HS1.2 enhancer in this disease.


Assuntos
Predisposição Genética para Doença , Cadeias Pesadas de Imunoglobulinas/genética , Lúpus Eritematoso Sistêmico/genética , Polimorfismo Genético , Adulto , Sequência de Bases , Ensaio de Desvio de Mobilidade Eletroforética , Feminino , Frequência do Gene , Humanos , Imunoglobulinas/genética , Masculino , Dados de Sequência Molecular , NF-kappa B/genética , Fatores de Risco
18.
Genes (Basel) ; 13(2)2022 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-35205222

RESUMO

The domestic pig (Sus scrofa) is a species representative of the Suina, one of the four suborders within Cetartiodactyla. In this paper, we reported our analysis of the pig TRG locus in comparison with the loci of species representative of the Ruminantia, Tylopoda, and Cetacea suborders. The pig TRG genomic structure reiterates the peculiarity of the organization of Cetartiodactyla loci in TRGC "cassettes", each containing the basic V-J-J-C unit. Eighteen genes arranged in four TRGC cassettes, form the pig TRG locus. All the functional TRG genes were expressed, and the TRGV genes preferentially rearrange with the TRGJ genes within their own cassette, which correlates the diversity of the γ-chain repertoire with the number of cassettes. Among them, the TRGC5, located at the 5' end of the locus, is the only cassette that retains a marked homology with the corresponding TRGC cassettes of all the analyzed species. The preservation of the TRGC5 cassette for such a long evolutionary time presumes a highly specialized function of its genes, which could be essential for the survival of species. Therefore, the maintenance of this cassette in pigs confirms that it is the most evolutionarily ancient within Cetartiodactyla, and it has undergone a process of duplication to give rise to the other TRGC cassettes in the different artiodactyl species in a lineage-specific manner.


Assuntos
Genes Codificadores da Cadeia gama de Receptores de Linfócitos T , Genoma , Evolução Molecular , Genoma/genética , Filogenia , Receptores de Antígenos de Linfócitos T/genética
19.
BMC Evol Biol ; 11: 71, 2011 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-21406099

RESUMO

BACKGROUND: The Immunoglobulin heavy chain (IgH) 3' Regulatory Region (3'RR), located at the 3' of the constant alpha gene, plays a crucial role in immunoglobulin production. In humans, there are 2 copies of the 3'RR, each composed of 4 main elements: 3 enhancers and a 20 bp tandem repeat. The single mouse 3'RR differs from the two human ones for the presence of 4 more regulative elements with the double copy of one enhancer at the border of a palindromic region. RESULTS: We compared the 3'RR organization in genomes of vertebrates to depict the evolutionary history of the region and highlight its shared features. We found that in the 8 species in which the whole region was included in a fully assembled contig (mouse, rat, dog, rabbit, panda, orangutan, chimpanzee, and human), the shared elements showed synteny and a highly conserved sequence, thus suggesting a strong evolutionary constraint. In these species, the wide 3'RR (~30 kb in human) bears a large palindromic sequence, consisting in two ~3 kb complementary branches spaced by a ~3 kb sequence always including the HS1.2 enhancer. In mouse and rat, HS3 is involved by the palindrome so that one copy of the enhancer is present on each side. A second relevant feature of our present work concerns human polymorphism of the HS1.2 enhancer, associated to immune diseases in our species. We detected a similar polymorphism in all the studied Catarrhini (a primate parvorder). The polymorphism consists of multiple copies of a 40 bp element up to 12 in chimpanzees, 8 in baboons, 6 in macaque, 5 in gibbons, 4 in humans and orangutan, separated by stretches of Cytosine. We show specific binding of this element to nuclear factors. CONCLUSIONS: The nucleotide sequence of the palindrome is not conserved among evolutionary distant species, suggesting pressures for the maintenance of two self-matching regions driving a three-dimensional structure despite of the inter-specific divergence at sequence level. The information about the conservation of the palindromic structure and the settling in primates of the polymorphic feature of HS1.2 show the relevance of these structures in the control and modulation of the Ig production through the formation of possible three-dimensional structures.


Assuntos
Elementos Facilitadores Genéticos , Cadeias Pesadas de Imunoglobulinas/genética , Sequências Repetidas Invertidas , Mamíferos/genética , Animais , Sítios de Ligação , Sequência Conservada , Humanos , Filogenia , Alinhamento de Sequência , Análise de Sequência de DNA , Sintenia
20.
BMC Genomics ; 12: 639, 2011 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-22208360

RESUMO

BACKGROUND: The sequencing of the cow genome was recently published (Btau_4.0 assembly). A second, alternate cow genome assembly (UMD2), based on the same raw sequence data, was also published. The two assemblies have been subsequently updated to Btau_4.2 and UMD3.1, respectively. RESULTS: We compared the Btau_4.2 and UMD3.1 alternate assemblies. Inconsistencies were grouped into three main categories: (i) DNA segments showing almost coincidental chromosomal mapping but discordant orientation (inversions); (ii) DNA segments showing a discordant map position along the same chromosome; and (iii) sequences present in one chromosomal assembly but absent in the corresponding chromosome of the other assembly. The latter category mainly consisted of large amounts of scaffolds that were unassigned in Btau_4.2 but successfully mapped in UMD3.1. We sampled 70 inconsistencies and identified appropriate cow BACs for each of them. These clones were then utilized in FISH experiments on cow metaphase or interphase nuclei in order to disambiguate the discrepancies. In almost all instances the FISH results agreed with the UMD3.1 assembly. Occasionally, however, the mapping data of both assemblies were discordant with the FISH results. CONCLUSIONS: Our work demonstrates how FISH, which is assembly independent, can be efficiently used to solve assembly problems frequently encountered using the shotgun approach.


Assuntos
Cromossomos Artificiais Bacterianos , Hibridização in Situ Fluorescente , Animais , Bovinos , Mapeamento Cromossômico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA