Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 580(7803): 402-408, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32296183

RESUMO

Global insights into cellular organization and genome function require comprehensive understanding of the interactome networks that mediate genotype-phenotype relationships1,2. Here we present a human 'all-by-all' reference interactome map of human binary protein interactions, or 'HuRI'. With approximately 53,000 protein-protein interactions, HuRI has approximately four times as many such interactions as there are high-quality curated interactions from small-scale studies. The integration of HuRI with genome3, transcriptome4 and proteome5 data enables cellular function to be studied within most physiological or pathological cellular contexts. We demonstrate the utility of HuRI in identifying the specific subcellular roles of protein-protein interactions. Inferred tissue-specific networks reveal general principles for the formation of cellular context-specific functions and elucidate potential molecular mechanisms that might underlie tissue-specific phenotypes of Mendelian diseases. HuRI is a systematic proteome-wide reference that links genomic variation to phenotypic outcomes.


Assuntos
Proteoma/metabolismo , Espaço Extracelular/metabolismo , Humanos , Especificidade de Órgãos , Mapeamento de Interação de Proteínas
2.
Dev Biol ; 465(2): 144-156, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32697972

RESUMO

The zebrafish model organism has been of exceptional utility for the study of vertebrate development and disease through the application of tissue-specific labelling and overexpression of genes carrying patient-derived mutations. However, there remains a need for a binary expression system that is both non-toxic and not silenced over animal generations by DNA methylation. The Q binary expression system derived from the fungus Neurospora crassa is ideal, because the consensus binding site for the QF transcription factor lacks CpG dinucleotides, precluding silencing by CpG-meditated methylation. To optimize this system for zebrafish, we systematically tested several variants of the QF transcription factor: QF full length; QF2, which lacks the middle domain; QF2w, which is an attenuated version of QF2; and chimeric QFGal4. We found that full length QF and QF2 were strongly toxic to zebrafish embryos, QF2w was mildly toxic, and QFGal4 was well tolerated, when injected as RNA or expressed ubiquitously from stable transgenes. In addition, QFGal4 robustly activated a Tg(QUAS:GFPNLS) reporter transgene. To increase the utility of this system, we also modified the QF effector sequence termed QUAS, which consists of five copies of the QF binding site. Specifically, we decreased both the CpG dinucleotide content, as well as the repetitiveness of QUAS, to reduce the risk of transgene silencing via CpG methylation. Moreover, these modifications to QUAS removed leaky QF-independent neural expression that we detected in the original QUAS sequence. To demonstrate the utility of our QF optimizations, we show how the Q-system can be used for lineage tracing using a Cre-dependent Tg(ubi:QFGal4-switch) transgene. We also demonstrate that QFGal4 can be used in transient injections to tag and label endogenous genes by knocking in QFGal4 into sox2 and ubiquitin C genes.


Assuntos
Animais Geneticamente Modificados , Expressão Gênica , Neurospora crassa/genética , Proteínas de Protozoários , Fatores de Transcrição , Peixe-Zebra , Animais , Animais Geneticamente Modificados/genética , Animais Geneticamente Modificados/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
3.
Elife ; 132024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39052000

RESUMO

High-throughput vertebrate animal model systems for the study of patient-specific biology and new therapeutic approaches for aggressive brain tumors are currently lacking, and new approaches are urgently needed. Therefore, to build a patient-relevant in vivo model of human glioblastoma, we expressed common oncogenic variants including activated human EGFRvIII and PI3KCAH1047R under the control of the radial glial-specific promoter her4.1 in syngeneic tp53 loss-of-function mutant zebrafish. Robust tumor formation was observed prior to 45 days of life, and tumors had a gene expression signature similar to human glioblastoma of the mesenchymal subtype, with a strong inflammatory component. Within early stage tumor lesions, and in an in vivo and endogenous tumor microenvironment, we visualized infiltration of phagocytic cells, as well as internalization of tumor cells by mpeg1.1:EGFP+ microglia/macrophages, suggesting negative regulatory pressure by pro-inflammatory cell types on tumor growth at early stages of glioblastoma initiation. Furthermore, CRISPR/Cas9-mediated gene targeting of master inflammatory transcription factors irf7 or irf8 led to increased tumor formation in the primary context, while suppression of phagocyte activity led to enhanced tumor cell engraftment following transplantation into otherwise immune-competent zebrafish hosts. Altogether, we developed a genetically relevant model of aggressive human glioblastoma and harnessed the unique advantages of zebrafish including live imaging, high-throughput genetic and chemical manipulations to highlight important tumor-suppressive roles for the innate immune system on glioblastoma initiation, with important future opportunities for therapeutic discovery and optimizations.


Glioblastoma is the most common and deadly type of brain cancer in adults. Fewer than 7% of patients survive for more than five years after diagnosis. This poor prognosis for patients with glioblastoma has not significantly improved for decades. The standard treatment for glioblastoma consists of surgery, radiotherapy and the same chemotherapy that has been prescribed for twenty years. This suggests that there is still much to learn about glioblastoma and how better to treat it. Scientists use various laboratory models to mimic human disease. They can study human glioblastoma cells grown in the laboratory or transplanted into mice, and they can also use genetically engineered mice that develop brain tumors from their own tissue. These systems provide valuable information about glioblastoma, but each model has certain drawbacks. For example, glioblastoma cells in a dish do not grow in an environment containing other types of cells found in the body, such as immune cells. And although studying glioblastoma in mice bypasses this problem, such experiments often take years to perform and are very expensive. To address these limitations, Weiss et al. asked whether introducing some of the same genetic mutations that cause glioblastoma in humans could lead to brain tumors in zebrafish. Zebrafish have multiple advantages as models of human disease: they are inexpensive to maintain and have a rapid life cycle, they are relatively easy to manipulate using various genetic tools, and they are transparent so that the growth of tumors can be filmed. Weiss et al. expressed mutant versions of genes found in many patients with glioblastoma in the brains of developing zebrafish. These zebrafish rapidly developed tumor-like growths and detailed analyses confirmed that these tumors highly resembled human glioblastomas. Zebrafish glioblastomas contained active immune cells in addition to the cancer cells and showed signs of being inflamed. Weiss et al. filmed interactions between immune cells and cancer cells in zebrafish brains. They noted that specific immune cells called macrophages (commonly known to destroy certain disease-causing pathogens like bacteria) had pieces of tumors inside them. This and other evidence suggested that these macrophages counteracted the growth of tumors by potentially engulfing (or 'eating') glioblastoma cells during the early stages of tumor development. Altogether, these experiments indicate that zebrafish containing specific genes that cause glioblastoma in humans can mimic disease in many respects. Future studies will build on this work by testing other genes and further studying interactions between immune cells and cancer cells in the animal body.


Assuntos
Neoplasias Encefálicas , Modelos Animais de Doenças , Receptores ErbB , Glioblastoma , Inflamação , Proteína Supressora de Tumor p53 , Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , Glioblastoma/genética , Glioblastoma/patologia , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , Receptores ErbB/metabolismo , Receptores ErbB/genética , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Inflamação/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Humanos , Microambiente Tumoral/genética
4.
Commun Biol ; 5(1): 865, 2022 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-36002479

RESUMO

Nematode parasites of humans, livestock and crops dramatically impact human health and welfare. Alarmingly, parasitic nematodes of animals have rapidly evolved resistance to anthelmintic drugs, and traditional nematicides that protect crops are facing increasing restrictions because of poor phylogenetic selectivity. Here, we exploit multiple motor outputs of the model nematode C. elegans towards nematicide discovery. This work yielded multiple compounds that selectively kill and/or immobilize diverse nematode parasites. We focus on one compound that induces violent convulsions and paralysis that we call nementin. We find that nementin stimulates neuronal dense core vesicle release, which in turn enhances cholinergic signaling. Consequently, nementin synergistically enhances the potency of widely-used non-selective acetylcholinesterase (AChE) inhibitors, but in a nematode-selective manner. Nementin therefore has the potential to reduce the environmental impact of toxic AChE inhibitors that are used to control nematode infections and infestations.


Assuntos
Caenorhabditis elegans , Nematoides , Acetilcolinesterase , Animais , Antinematódeos/farmacologia , Humanos , Neurotransmissores , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA