Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 520(7548): 499-504, 2015 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-25874674

RESUMO

Oxytocin is important for social interactions and maternal behaviour. However, little is known about when, where and how oxytocin modulates neural circuits to improve social cognition. Here we show how oxytocin enables pup retrieval behaviour in female mice by enhancing auditory cortical pup call responses. Retrieval behaviour required the left but not right auditory cortex, was accelerated by oxytocin in the left auditory cortex, and oxytocin receptors were preferentially expressed in the left auditory cortex. Neural responses to pup calls were lateralized, with co-tuned and temporally precise excitatory and inhibitory responses in the left cortex of maternal but not pup-naive adults. Finally, pairing calls with oxytocin enhanced responses by balancing the magnitude and timing of inhibition with excitation. Our results describe fundamental synaptic mechanisms by which oxytocin increases the salience of acoustic social stimuli. Furthermore, oxytocin-induced plasticity provides a biological basis for lateralization of auditory cortical processing.


Assuntos
Córtex Auditivo/fisiologia , Comportamento Materno/fisiologia , Inibição Neural/fisiologia , Ocitocina/metabolismo , Estimulação Acústica , Animais , Animais Recém-Nascidos , Córtex Auditivo/citologia , Percepção Auditiva/fisiologia , Potenciais Evocados Auditivos , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Plasticidade Neuronal , Receptores de Ocitocina/metabolismo , Abstinência Sexual , Vocalização Animal
2.
J Neurosci ; 33(14): 6123-32, 2013 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-23554493

RESUMO

The mechanisms by which natural rewards such as sugar affect synaptic transmission and behavior are largely unexplored. Here, we investigate regulation of nucleus accumbens synapses by sucrose intake. Previous studies have shown that AMPA receptor (AMPAR) trafficking is a major mechanism for regulating synaptic strength, and that in vitro, trafficking of AMPARs containing the GluA1 subunit takes place by a two-step mechanism involving extrasynaptic and then synaptic receptor transport. We report that in rat, repeated daily ingestion of a 25% sucrose solution transiently elevated spontaneous locomotion and potentiated accumbens core synapses through incorporation of Ca(2+)-permeable AMPA receptors (CPARs), which are GluA1-containing, GluA2-lacking AMPARs. Electrophysiological, biochemical, and quantitative electron microscopy studies revealed that sucrose training (7 d) induced a stable (>24 h) intraspinous GluA1 population, and that in these rats a single sucrose stimulus rapidly (5 min) but transiently (<24 h) elevated GluA1 at extrasynaptic sites. CPARs and dopamine D1 receptors were required in vivo for elevated locomotion after sucrose ingestion. Significantly, a 7 d protocol of daily ingestion of a 3% solution of saccharin, a noncaloric sweetener, induced synaptic GluA1 similarly to 25% sucrose ingestion. These findings identify multistep GluA1 trafficking, previously described in vitro, as a mechanism for acute regulation of synaptic transmission in vivo by a natural orosensory reward. Trafficking is stimulated by a chemosensory pathway that is not dependent on the caloric value of sucrose.


Assuntos
Neurônios/metabolismo , Receptores de AMPA/metabolismo , Sacarose/administração & dosagem , Edulcorantes/administração & dosagem , Animais , Proteínas de Transporte , Condicionamento Operante/fisiologia , Dopamina beta-Hidroxilase/metabolismo , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Técnicas In Vitro , Locomoção/fisiologia , Masculino , Microscopia Eletrônica de Transmissão , Neurônios/efeitos dos fármacos , Núcleo Accumbens/citologia , Fosfoproteínas/metabolismo , Densidade Pós-Sináptica/metabolismo , Densidade Pós-Sináptica/ultraestrutura , Transporte Proteico/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Frações Subcelulares/metabolismo , Sinaptossomos/metabolismo , Sinaptossomos/ultraestrutura
3.
Elife ; 92020 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-32558643

RESUMO

Layering has been a long-appreciated feature of higher order mammalian brain structures but the extent to which it plays an instructive role in synaptic specification remains unknown. Here we examine the formation of synaptic circuitry under cellular heterotopia in hippocampal CA1, using a mouse model of the human neurodevelopmental disorder Type I Lissencephaly. We identify calbindin-expressing principal cells which are mispositioned under cellular heterotopia. Ectopic calbindin-expressing principal cells develop relatively normal morphological features and stunted intrinsic physiological features. Regarding network development, a connectivity preference for cholecystokinin-expressing interneurons to target calbindin-expressing principal cells is diminished. Moreover, in vitro gamma oscillatory activity is less synchronous across heterotopic bands and mutants are less responsive to pharmacological inhibition of cholecystokinin-containing interneurons. This study will aid not only in our understanding of how cellular networks form but highlight vulnerable cellular circuit motifs that might be generalized across disease states.


Assuntos
Calbindinas/metabolismo , Lissencefalias Clássicas e Heterotopias Subcorticais em Banda/fisiopatologia , Hipocampo/fisiopatologia , Interneurônios/fisiologia , Células Piramidais/fisiologia , Animais , Colecistocinina/metabolismo , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos
4.
Elife ; 92020 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-33150866

RESUMO

Type I lissencephaly is a neuronal migration disorder caused by haploinsuffiency of the PAFAH1B1 (mouse: Pafah1b1) gene and is characterized by brain malformation, developmental delays, and epilepsy. Here, we investigate the impact of Pafah1b1 mutation on the cellular migration, morphophysiology, microcircuitry, and transcriptomics of mouse hippocampal CA1 parvalbumin-containing inhibitory interneurons (PV+INTs). We find that WT PV+INTs consist of two physiological subtypes (80% fast-spiking (FS), 20% non-fast-spiking (NFS)) and four morphological subtypes. We find that cell-autonomous mutations within interneurons disrupts morphophysiological development of PV+INTs and results in the emergence of a non-canonical 'intermediate spiking (IS)' subset of PV+INTs. We also find that now dominant IS/NFS cells are prone to entering depolarization block, causing them to temporarily lose the ability to initiate action potentials and control network excitation, potentially promoting seizures. Finally, single-cell nuclear RNAsequencing of PV+INTs revealed several misregulated genes related to morphogenesis, cellular excitability, and synapse formation.


Assuntos
1-Alquil-2-acetilglicerofosfocolina Esterase/metabolismo , Lissencefalias Clássicas e Heterotopias Subcorticais em Banda/patologia , Hipocampo/citologia , Interneurônios/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Parvalbuminas/metabolismo , 1-Alquil-2-acetilglicerofosfocolina Esterase/genética , Animais , Fenômenos Eletrofisiológicos , Regulação da Expressão Gênica/fisiologia , Camundongos , Camundongos Knockout , Proteínas Associadas aos Microtúbulos/genética
5.
Neuron ; 106(5): 842-854.e4, 2020 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-32213321

RESUMO

Excitation in neural circuits must be carefully controlled by inhibition to regulate information processing and network excitability. During development, cortical inhibitory and excitatory inputs are initially mismatched but become co-tuned or balanced with experience. However, little is known about how excitatory-inhibitory balance is defined at most synapses or about the mechanisms for establishing or maintaining this balance at specific set points. Here we show how coordinated long-term plasticity calibrates populations of excitatory-inhibitory inputs onto mouse auditory cortical pyramidal neurons. Pairing pre- and postsynaptic activity induced plasticity at paired inputs and different forms of heterosynaptic plasticity at the strongest unpaired synapses, which required minutes of activity and dendritic Ca2+ signaling to be computed. Theoretical analyses demonstrated how the relative rate of heterosynaptic plasticity could normalize and stabilize synaptic strengths to achieve any possible excitatory-inhibitory correlation. Thus, excitatory-inhibitory balance is dynamic and cell specific, determined by distinct plasticity rules across multiple excitatory and inhibitory synapses.


Assuntos
Potenciais de Ação/fisiologia , Córtex Auditivo/fisiologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , Potenciais Pós-Sinápticos Inibidores/fisiologia , Inibição Neural/fisiologia , Plasticidade Neuronal/fisiologia , Células Piramidais/fisiologia , Animais , Sinalização do Cálcio , Potenciais Evocados , Potenciação de Longa Duração/fisiologia , Camundongos , Técnicas de Patch-Clamp , Sinapses/fisiologia
6.
Neuron ; 96(1): 177-189.e7, 2017 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-28957667

RESUMO

Long-term modifications of neuronal connections are critical for reliable memory storage in the brain. However, their locus of expression-pre- or postsynaptic-is highly variable. Here we introduce a theoretical framework in which long-term plasticity performs an optimization of the postsynaptic response statistics toward a given mean with minimal variance. Consequently, the state of the synapse at the time of plasticity induction determines the ratio of pre- and postsynaptic modifications. Our theory explains the experimentally observed expression loci of the hippocampal and neocortical synaptic potentiation studies we examined. Moreover, the theory predicts presynaptic expression of long-term depression, consistent with experimental observations. At inhibitory synapses, the theory suggests a statistically efficient excitatory-inhibitory balance in which changes in inhibitory postsynaptic response statistics specifically target the mean excitation. Our results provide a unifying theory for understanding the expression mechanisms and functions of long-term synaptic transmission plasticity.


Assuntos
Modelos Neurológicos , Plasticidade Neuronal/fisiologia , Transmissão Sináptica/fisiologia , Animais , Hipocampo/fisiologia , Potenciação de Longa Duração/fisiologia , Depressão Sináptica de Longo Prazo/fisiologia , Neocórtex/fisiologia , Inibição Neural/fisiologia
7.
Curr Biol ; 26(5): 593-604, 2016 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-26877081

RESUMO

Aggression is a prevalent behavior in the animal kingdom that is used to settle competition for limited resources. Given the high risk associated with fighting, the central nervous system has evolved an active mechanism to modulate its expression. Lesioning the lateral septum (LS) is known to cause "septal rage," a phenotype characterized by a dramatic increase in the frequency of attacks. To understand the circuit mechanism of LS-mediated modulation of aggression, we examined the influence of LS input on the cells in and around the ventrolateral part of the ventromedial hypothalamus (VMHvl)-a region required for male mouse aggression. We found that the inputs from the LS inhibited the attack-excited cells but surprisingly increased the overall activity of attack-inhibited cells. Furthermore, optogenetic activation of the projection from LS cells to the VMHvl terminated ongoing attacks immediately but had little effect on mounting. Thus, LS projection to the ventromedial hypothalamic area represents an effective pathway for suppressing male aggression.


Assuntos
Agressão , Hipotálamo Médio/fisiologia , Núcleos Septais/fisiologia , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Optogenética , Comportamento Sexual Animal
8.
Neuron ; 86(2): 514-28, 2015 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-25843405

RESUMO

Synapses are plastic and can be modified by changes in spike timing. Whereas most studies of long-term synaptic plasticity focus on excitation, inhibitory plasticity may be critical for controlling information processing, memory storage, and overall excitability in neural circuits. Here we examine spike-timing-dependent plasticity (STDP) of inhibitory synapses onto layer 5 neurons in slices of mouse auditory cortex, together with concomitant STDP of excitatory synapses. Pairing pre- and postsynaptic spikes potentiated inhibitory inputs irrespective of precise temporal order within ∼10 ms. This was in contrast to excitatory inputs, which displayed an asymmetrical STDP time window. These combined synaptic modifications both required NMDA receptor activation and adjusted the excitatory-inhibitory ratio of events paired with postsynaptic spiking. Finally, subthreshold events became suprathreshold, and the time window between excitation and inhibition became more precise. These findings demonstrate that cortical inhibitory plasticity requires interactions with co-activated excitatory synapses to properly regulate excitatory-inhibitory balance.


Assuntos
Potenciais de Ação/fisiologia , Córtex Auditivo/fisiologia , Plasticidade Neuronal/fisiologia , Células Piramidais/fisiologia , Potenciais de Ação/efeitos dos fármacos , Animais , Antagonistas GABAérgicos/farmacologia , Técnicas In Vitro , Potenciação de Longa Duração/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Técnicas de Patch-Clamp , Terminações Pré-Sinápticas/fisiologia , Receptores de N-Metil-D-Aspartato/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA