Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Am Nat ; 183(4): 480-93, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24642493

RESUMO

Individuals invest limited resources across vital tasks such as reproduction and survival. Individuals can spread reproductive investment over their lifetime, but cues of death or reduced fitness can influence this investment. In some systems, cues of infection induce early but costly reproduction through fecundity compensation as future reproduction becomes uncertain. A key aspect of parasite biology is the delay between exposure to parasites and the onset of virulence. This creates an important window of opportunity for hosts to respond to infection. Existing models have not accounted for this delay or the costs borne by offspring. We combine a theoretical and experimental approach to assess the role of costs and the importance of delay in virulence on fecundity compensation. We find that a delay in virulence selects for plastic fecundity responses even with moderate offspring costs. We tested our model experimentally by exposing pea aphids, Acyrthosiphon pisum, to various ecologically relevant cues of infection and monitored lifetime reproduction and survival of these aphids and their offspring. Our challenges induced fecundity compensation, but we did not detect any costs in mothers or offspring. We predict that the relationship between the costs and the delay in onset of virulence, as found here, determines the success of fecundity compensation as an adaptation against parasitism.


Assuntos
Afídeos/fisiologia , Interações Hospedeiro-Patógeno , Modelos Biológicos , Reprodução , Virulência , Animais , Afídeos/microbiologia , Feminino
2.
Epidemics ; 38: 100535, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34923396

RESUMO

BACKGROUND: As vaccination coverage against SARS-CoV-2 increases amidst the emergence and spread of more infectious and potentially more deadly viral variants, decisions on timing and extent of relaxing effective, but unsustainable, non-pharmaceutical interventions (NPIs) need to be made. METHODS: An individual-based transmission model of SARS-CoV-2 dynamics, OpenCOVID, was developed to compare the impact of various vaccination and NPI strategies on the COVID-19 epidemic in Switzerland. OpenCOVID uses the Oxford Containment Health Index (OCHI) to quantify the stringency of NPIs. RESULTS: Even if NPIs in place in March 2021 were to be maintained and the vaccine campaigns rollout rapidly scaled-up, a 'third wave' was predicted. However, we find a cautious phased relaxation can substantially reduce population-level morbidity and mortality. We find that a faster vaccination campaign can offset the size of such a wave, allowing more flexibility for NPIs to be relaxed sooner. Model outcomes were most sensitive to the level of infectiousness of variants of concern observed in Switzerland. CONCLUSION: A rapid vaccination rollout can allow the sooner relaxation of NPIs, however ongoing surveillance of - and swift responses to - emerging viral variants is of utmost importance for epidemic control.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/epidemiologia , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Humanos , Suíça/epidemiologia , Vacinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA