Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Breast Cancer Res ; 23(1): 72, 2021 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-34253233

RESUMO

BACKGROUND: Re-excision due to positive margins following breast-conserving surgery (BCS) negatively affects patient outcomes and healthcare costs. The inability to visualize margin involvement is a significant challenge in BCS. 5-Aminolevulinic acid hydrochloride (5-ALA HCl), a non-fluorescent oral prodrug, causes intracellular accumulation of fluorescent porphyrins in cancer cells. This single-center Phase II randomized controlled trial evaluated the safety, feasibility, and diagnostic accuracy of a prototype handheld fluorescence imaging device plus 5-ALA for intraoperative visualization of invasive breast carcinomas during BCS. METHODS: Fifty-four patients were enrolled and randomized to receive no 5-ALA or oral 5-ALA HCl (15 or 30 mg/kg). Forty-five patients (n = 15/group) were included in the analysis. Fluorescence imaging of the excised surgical specimen was performed, and biopsies were collected from within and outside the clinically demarcated tumor border of the gross specimen for blinded histopathology. RESULTS: In the absence of 5-ALA, tissue autofluorescence imaging lacked tumor-specific fluorescent contrast. Both 5-ALA doses caused bright red tumor fluorescence, with improved visualization of tumor contrasted against normal tissue autofluorescence. In the 15 mg/kg 5-ALA group, the positive predictive value (PPV) for detecting breast cancer inside and outside the grossly demarcated tumor border was 100.0% and 55.6%, respectively. In the 30 mg/kg 5-ALA group, the PPV was 100.0% and 50.0% inside and outside the demarcated tumor border, respectively. No adverse events were observed, and clinical feasibility of this imaging device-5-ALA combination approach was confirmed. CONCLUSIONS: This is the first known clinical report of visualization of 5-ALA-induced fluorescence in invasive breast carcinoma using a real-time handheld intraoperative fluorescence imaging device. TRIAL REGISTRATION: Clinicaltrials.gov identifier NCT01837225 . Registered 23 April 2013.


Assuntos
Ácido Aminolevulínico/uso terapêutico , Neoplasias da Mama/diagnóstico por imagem , Imagem Óptica/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Biópsia , Neoplasias da Mama/patologia , Neoplasias da Mama/cirurgia , Meios de Contraste/uso terapêutico , Feminino , Fluorescência , Humanos , Cuidados Intraoperatórios , Margens de Excisão , Mastectomia Segmentar , Pessoa de Meia-Idade , Imagem Óptica/instrumentação , Valor Preditivo dos Testes , Cirurgia Assistida por Computador
2.
Int Wound J ; 14(5): 833-841, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28244218

RESUMO

Clinical wound assessment involves microbiological swabbing of wounds to identify and quantify bacterial species, and to determine microbial susceptibility to antibiotics. The Levine swabbing technique may be suboptimal because it samples only the wound bed, missing other diagnostically relevant areas of the wound, which may contain clinically significant bacteria. Thus, there is a clinical need to improve the reliability of microbiological wound sampling. To address this, a handheld portable autofluorescence (AF) imaging device that detects bacteria in real time, without contrast agents, was developed. Here, we report the results of a clinical study evaluating the use of real-time AF imaging to visualise bacteria in and around the wound bed and to guide swabbing during the clinical assessment of diabetic foot ulcers, compared with the Levine technique. We investigated 33 diabetic foot ulcers (n = 31 patients) and found that AF imaging more accurately identified the presence of moderate and/or heavy bacterial load compared with the Levine technique (accuracy 78% versus 52%, P = 0·048; adjusted diagnostic odds ratio 7·67, P < 0·00022 versus 3·07, P = 0·066) and maximised the effectiveness of bacterial load sampling, with no significant impact on clinical workflow. AF imaging may help clinicians better identify the wound areas with clinically significant bacteria, and maximise sampling of treatment-relevant pathogens.


Assuntos
Bactérias/isolamento & purificação , Carga Bacteriana/instrumentação , Pé Diabético/microbiologia , Imagem Óptica , Manejo de Espécimes/métodos , Infecção dos Ferimentos/diagnóstico , Infecção dos Ferimentos/microbiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Adulto Jovem
3.
Int Wound J ; 13(4): 449-53, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25907362

RESUMO

Chronic wounds are a significant burden to global patient and health care infrastructures, and there is a need for better methods of early wound diagnosis and treatment. Traditional diagnosis of chronic wound infection by pathogenic bacteria, using clinical signs and symptoms, is based on visual inspection under white light and microbiological sampling (e.g. swabbing and/or biopsy) of the wound, which are subjective and suboptimal. Diagnosing microbial infection based on traditional clinical signs and symptoms in wounds of asymptomatic patients is especially challenging at the bedside. Bacteria are invisible to the unaided eye and wound sampling for diagnostic testing can cause unacceptable delays in diagnosis and treatment. To address this problem, we developed a new prototype handheld, portable fluorescence imaging device that enables non-contact, real-time, high-resolution visualisation of pathogenic bacteria and tissues in wounds. Herein, we report the clinical use of this imaging device in detecting subsurface heavy bacterial load and subclinical local infection in an asymptomatic 50-year-old patient with a non-healing diabetic foot ulcer.


Assuntos
Infecção dos Ferimentos , Bactérias , Carga Bacteriana , Pé Diabético , Humanos , Pessoa de Meia-Idade
4.
Mol Imaging ; 14: 452-74, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26461814

RESUMO

Radiation therapy is an effective cancer treatment used in over 50% of cancer patients. Preclinical research in radiobiology plays a major role in influencing the translation of radiotherapy-based treatment strategies into clinical practice. Studies have demonstrated that various components of tumors and their microenvironments, including vasculature, immune and stem cells, and stromal cells, can influence the response of solid tumors to radiation. Optically enabled imaging techniques used in experimental animal models of cancer offer a unique and powerful way to quantitatively track spatiotemporal changes in these tumor components in vivo at macro-, meso-, and microscopic resolutions following radiotherapy. In this review, we discuss the role of both well-established and emerging intravital microscopy techniques for studying tumors and their microenvironment in vivo, in response to irradiation. The development and application of new animal models, small animal microirradiation technologies, and multimodal optically enabled intravital microscopy techniques are emphasized within the framework of preclinical radiobiology research. We also comment on the potential influence that these newer imaging techniques may have on the clinical translation of new preclinical radiobiology discoveries.


Assuntos
Microscopia Intravital/métodos , Imagem Óptica/métodos , Radiobiologia , Animais , Humanos , Imunomodulação , Modelos Animais , Neoplasias/diagnóstico por imagem , Cintilografia
5.
Int J Cancer ; 134(3): 717-30, 2014 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23893655

RESUMO

Peritoneal carcinomatosis (PC) represents a significant clinical challenge for which there are few treatment options. Oncolytic viruses are ideal candidates for PC treatment because of their high tumor specificity, excellent safety profile and suitability for peritoneal delivery. Here, we described the use of vvDD-SR-RFP, a recombinant vaccinia virus, in xenograft and syngeneic models of colorectal PC. Colorectal cancer cell lines were highly susceptible to vvDD-SR-RFP replication and cytotoxicity. Intraperitoneal delivery of vvDD-SR-RFP on Day 12 to mice with colorectal carcinomatosis significantly improved survival whereas survival was not improved following virus treatment on Day 8, when tumors were smaller. Immunohistochemistry revealed early tumors had a poorly distributed network of blood vessels and lower proliferation index compared to later tumors. Virus infection was also restricted to tumor rims following Day 8 treatment, whereas it was disseminated in tumors treated on Day 12. Additionally, direct infection of tumor endothelium was observed and virus infection correlated with a loss of endothelial staining and induction of cell death. Our results demonstrate that tumor vasculature has a critical role in virus delivery and tumor response. This will have significant implications in the clinical setting, both in understanding timing of therapies and in designing combination treatment strategies.


Assuntos
Carcinoma/irrigação sanguínea , Carcinoma/terapia , Terapia Viral Oncolítica , Neoplasias Peritoneais/irrigação sanguínea , Neoplasias Peritoneais/terapia , Vaccinia virus/fisiologia , Animais , Carcinoma/patologia , Proliferação de Células , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos SCID , Neoplasias Peritoneais/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Mol Imaging ; 132014.
Artigo em Inglês | MEDLINE | ID: mdl-25430722

RESUMO

Biomarker-specific imaging probes offer ways to improve molecular diagnosis, intraoperative margin assessment, and tumor resection. Fluorescence and photoacoustic imaging probes are of particular interest for clinical applications because the combination enables deeper tissue penetration for tumor detection while maintaining imaging sensitivity compared to a single optical imaging modality. Here we describe the development of a human epidermal growth factor receptor 2 (HER2)-targeting imaging probe to visualize differential levels of HER2 expression in a breast cancer model. Specifically, we labeled trastuzumab with Black Hole Quencher 3 (BHQ3) and fluorescein for photoacoustic and fluorescence imaging of HER2 overexpression, respectively. The dual-labeled trastuzumab was tested for its ability to detect HER2 overexpression in vitro and in vivo. We demonstrated an over twofold increase in the signal intensity for HER2-overexpressing tumors in vivo, compared to low-HER2-expressing tumors, using photoacoustic imaging. Furthermore, we demonstrated the feasibility of detecting tumors and positive surgical margins by fluorescence imaging. These results suggest that multimodal HER2-specific imaging of breast cancer using the BHQ3-fluorescein trastuzumab enables molecular-level detection and surgical margin assessment of breast tumors in vivo. This technique may have future clinical impact for primary lesion detection, as well as intraoperative molecular-level surgical guidance in breast cancer.


Assuntos
Anticorpos Monoclonais Humanizados/química , Anticorpos Monoclonais Humanizados/farmacocinética , Neoplasias da Mama/diagnóstico , Fluoresceínas/farmacocinética , Compostos Radiofarmacêuticos/farmacocinética , Receptor ErbB-2/metabolismo , Animais , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Meios de Contraste/farmacocinética , Feminino , Humanos , Neoplasias Mamárias Experimentais/metabolismo , Camundongos , Imagem Multimodal , Imagem Óptica/métodos , Trastuzumab , Regulação para Cima
7.
BMC Biomed Eng ; 6(1): 5, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38822389

RESUMO

BACKGROUND: Visualization of cancer during breast conserving surgery (BCS) remains challenging; the BCS reoperation rate is reported to be 20-70% of patients. An urgent clinical need exists for real-time intraoperative visualization of breast carcinomas during BCS. We previously demonstrated the ability of a prototype imaging device to identify breast carcinoma in excised surgical specimens following 5-aminolevulinic acid (5-ALA) administration. However, this prototype device was not designed to image the surgical cavity for remaining carcinoma after the excised lumpectomy specimen is removed. A new handheld fluorescence (FL) imaging prototype device, designed to image both excised specimens and within the surgical cavity, was assessed in a clinical trial to evaluate its clinical utility for first-in-human, real-time intraoperative imaging during index BCS. RESULTS: The imaging device combines consumer-grade imaging sensory technology with miniature light-emitting diodes (LEDs) and multiband optical filtering to capture high-resolution white light (WL) and FL digital images and videos. The technology allows for visualization of protoporphyrin IX (PpIX), which fluoresces red when excited by violet-blue light. To date, n = 17 patients have received 20 mg kg bodyweight (BW) 5-ALA orally 2-4 h before imaging to facilitate the accumulation of PpIX within tumour cells. Tissue types were identified based on their colour appearance. Breast tumours in sectioned lumpectomies appeared red, which contrasted against the green connective tissues and orange-brown adipose tissues. In addition, ductal carcinoma in situ (DCIS) that was missed during intraoperative standard of care was identified at the surgical margin at <1 mm depth. In addition, artifacts due to the surgical drape, illumination, and blood within the surgical cavity were discovered. CONCLUSIONS: This study has demonstrated the detection of a grossly occult positive margin intraoperatively. Artifacts from imaging within the surgical cavity have been identified, and potential mitigations have been proposed. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT01837225 (Trial start date is September 2010. It was registered to ClinicalTrials.gov retrospectively on April 23, 2013, then later updated on April 9, 2020, to reflect the introduction of the new imaging device.).

8.
Opt Lett ; 38(8): 1280-2, 2013 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-23595458

RESUMO

We demonstrate a method for differentiating tissue disease states using the intrinsic texture properties of speckle in optical coherence tomography (OCT) images of normal and tumor tissues obtained in vivo. This approach fits a gamma distribution function to the nonlog-compressed OCT image intensities, thus allowing differentiation of normal and tumor tissues in an ME-180 human cervical cancer mouse xenograft model. Quantitative speckle intensity distribution analysis thus shows promise for identifying tissue pathologies, with potential for early cancer detection in vivo.


Assuntos
Tomografia de Coerência Óptica/métodos , Neoplasias do Colo do Útero/patologia , Animais , Linhagem Celular Tumoral , Transformação Celular Neoplásica , Feminino , Humanos , Camundongos
9.
J Biomed Opt ; 28(8): 086004, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37655212

RESUMO

Significance: Optical tissue phantoms serve as inanimate and stable reference materials used to calibrate, characterize, standardize, and test biomedical imaging instruments. Although various types of solid tissue phantoms have been described in the literature, current phantom models are limited in that they do not have a depth feature that can be adjusted in real-time, they cannot be adapted to other applications, and their fabrication can be laborious and costly. Aim: Our goal was to develop an optical phantom that could assess the imaging performance of fluorescence imaging devices and be customizable for different applications. Approach: We developed a phantom with three distinct components, each of which can be customized. Results: We present a method for fabricating a solid optical tissue that contains (1) an adjustable depth capability using thin film phantoms, (2) a refillable chip loaded with fluorophores of the user's choice in various desired quantities, and (3) phantom materials representative of different tissue types. Conclusions: This article describes the development of phantom models that are customizable, adaptable, and easy to design and fabricate.


Assuntos
Corantes Fluorescentes , Imagem Óptica , Imagens de Fantasmas
10.
Sci Adv ; 9(23): eade8672, 2023 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-37285434

RESUMO

Pancreatic cancer is a lethal disease with few successful treatment options. Recent evidence demonstrates that tumor hypoxia promotes pancreatic tumor invasion, metastasis, and therapy resistance. However, little is known about the complex relationship between hypoxia and the pancreatic tumor microenvironment (TME). In this study, we developed a novel intravital fluorescence microscopy platform with an orthotopic mouse model of pancreatic cancer to study tumor cell hypoxia within the TME in vivo, at cellular resolution, over time. Using a fluorescent BxPC3-DsRed tumor cell line with a hypoxia-response element (HRE)/green fluorescent protein (GFP) reporter, we showed that HRE/GFP is a reliable biomarker of pancreatic tumor hypoxia, responding dynamically and reversibly to changing oxygen concentrations within the TME. We also characterized the spatial relationships between tumor hypoxia, microvasculature, and tumor-associated collagen structures using in vivo second harmonic generation microscopy. This quantitative multimodal imaging platform enables the unprecedented study of hypoxia within the pancreatic TME in vivo.


Assuntos
Neoplasias Pancreáticas , Hipóxia Tumoral , Camundongos , Animais , Neoplasias Pancreáticas/diagnóstico por imagem , Neoplasias Pancreáticas/patologia , Proteínas de Fluorescência Verde/metabolismo , Linhagem Celular Tumoral , Hipóxia , Modelos Animais de Doenças , Microscopia Intravital , Microambiente Tumoral , Neoplasias Pancreáticas
11.
PLoS One ; 18(5): e0270616, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37172046

RESUMO

OBJECTIVE: The San Francisco Declaration on Research Assessment (DORA) advocates for assessing biomedical research quality and impact, yet academic organizations continue to employ traditional measures such as Journal Impact Factor. We aimed to identify and prioritize measures for assessing research quality and impact. METHODS: We conducted a review of published and grey literature to identify measures of research quality and impact, which we included in an online survey. We assembled a panel of researchers and research leaders, and conducted a two-round Delphi survey to prioritize measures rated as high (rated 6 or 7 by ≥ 80% of respondents) or moderate (rated 6 or 7 by ≥ 50% of respondents) importance. RESULTS: We identified 50 measures organized in 8 domains: relevance of the research program, challenges to research program, or productivity, team/open science, funding, innovations, publications, other dissemination, and impact. Rating of measures by 44 panelists (60%) in Round One and 24 (55%) in Round Two of a Delphi survey resulted in consensus on the high importance of 5 measures: research advances existing knowledge, research plan is innovative, an independent body of research (or fundamental role) supported by peer-reviewed research funding, research outputs relevant to discipline, and quality of the content of publications. Five measures achieved consensus on moderate importance: challenges to research productivity, potential to improve health or healthcare, team science, collaboration, and recognition by professional societies or academic bodies. There was high congruence between researchers and research leaders across disciplines. CONCLUSIONS: Our work contributes to the field by identifying 10 DORA-compliant measures of research quality and impact, a more comprehensive and explicit set of measures than prior efforts. Research is needed to identify strategies to overcome barriers of use of DORA-compliant measures, and to "de-implement" traditional measures that do not uphold DORA principles yet are still in use.


Assuntos
Atenção à Saúde , Projetos de Pesquisa , Consenso , Fator de Impacto de Revistas , Inquéritos e Questionários , Técnica Delphi
12.
Small ; 8(11): 1780-92, 2012 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-22431228

RESUMO

Quantum dot (QD) contrast-enhanced molecular imaging has potential for early cancer detection and image guided treatment, but there is a lack of quantitative image contrast data to determine optimum QD administered doses, affecting the feasibility, risk and cost of such procedures, especially in vivo. Vascular fluorescence contrast-enhanced imaging is performed on nude mice bearing dorsal skinfold window chambers, injected with 4 different QD solutions emitting in the visible and near infrared. Linear relationships are observed among the vascular contrast, injected contrast agent volume, and QD concentration in blood. Due primarily to differential light absorption by blood, the vasculature is optimally visualized when exciting in the 435-480 nm region in 81% of the cases (89 out of 110 regions of interest in 22 window chambers). The threshold dose, defined here as the quantity of injected nanoparticles required to yield a vascular target-to-autofluorescence ratio of 2, varies from 10.6 to 0.15 pmol g(-1) depending on the QD emission wavelength. The wavelength optimization maximum and broadband gain, defined as the ratio of threshold doses estimated for optimal and suboptimal (worst wavelength or broadband) spectral illumination, has average values of 4.5 and 1.9, respectively. This study demonstrates, for the first time, optimized QD imaging in vivo. It also proposes and validates a theoretical framework for QD dose estimation and quantifies the effects of blood absorption, QD emission wavelength, and vessel diameter relative to the threshold dose.


Assuntos
Imagem Molecular/métodos , Pontos Quânticos , Animais , Feminino , Fluorescência , Humanos , Camundongos , Espectrometria de Fluorescência
13.
Opt Lett ; 37(15): 3180-2, 2012 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-22859125

RESUMO

In this Letter, we demonstrate high resolution, three-dimensional optical imaging of in vivo blood vessel networks using speckle variance optical coherence tomography, and the quantification of these images through the development of biologically relevant metrics using image processing and segmentation techniques. Extracted three-dimensional metrics include vascular density, vessel tortuosity, vascular network fractal dimension, and tissue vascularity. We demonstrate the ability of this quantitative imaging approach to characterize normal and tumor vascular networks in a preclinical animal model and the potential for quantitative, longitudinal vascular treatment response monitoring.


Assuntos
Microvasos/metabolismo , Tomografia de Coerência Óptica/métodos , Linhagem Celular Tumoral , Humanos , Imageamento Tridimensional
14.
Arterioscler Thromb Vasc Biol ; 31(12): 2938-48, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21852558

RESUMO

OBJECTIVE: The goal of this study was to characterize the factors and conditions required for smooth muscle cell (SMC)-directed differentiation of Sox2(+) multipotent rat and human skin-derived precursors (SKPs) and to define whether they represent a source of fully functional vascular SMCs for applications in vivo. METHODS AND RESULTS: We found that rat SKPs can differentiate almost exclusively into SMCs by reducing serum concentrations to 0.5% to 2% and plating them at low density. Human SKPs derived from foreskin required the addition of transforming growth factor-ß1 or -ß3 to differentiate into SMCs, but they did so even in the absence of serum. SMC formation was confirmed by quantitative reverse transcription-polymerase chain reaction, immunocytochemistry, and fluorescence-activated cell sorting, with increased expression of smoothelin-B and little to no expression of telokin or smooth muscle γ-actin, together indicating that SKPs differentiated into vascular rather than visceral SMCs. Rat and human SKP-derived SMCs were able to contract in vitro and also wrap around and support new capillary and larger blood vessel formation in angiogenesis assays in vivo. CONCLUSIONS: SKPs are Sox2(+) progenitors that represent an attainable autologous source of stem cells that can be easily differentiated into functional vascular SMCs in defined serum-free conditions without reprogramming. SKPs represent a clinically viable cell source for potential therapeutic applications in neovascularization.


Assuntos
Diferenciação Celular , Células-Tronco Multipotentes/citologia , Músculo Liso Vascular/citologia , Pele/citologia , Actinas/metabolismo , Animais , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Proteínas do Citoesqueleto/metabolismo , Humanos , Masculino , Modelos Animais , Células-Tronco Multipotentes/efeitos dos fármacos , Proteínas Musculares/metabolismo , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/metabolismo , Quinase de Cadeia Leve de Miosina/metabolismo , Neovascularização Fisiológica/fisiologia , Fragmentos de Peptídeos/metabolismo , Ratos , Ratos Sprague-Dawley , Fator de Crescimento Transformador beta1/farmacologia , Fator de Crescimento Transformador beta3/farmacologia
15.
Radiat Res ; 197(6): 626-637, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35192719

RESUMO

Stereotactic body radiation therapy (SBRT) has shown promising results in the treatment of pancreatic cancer and other solid tumors. However, wide adoption of SBRT remains limited largely due to uncertainty about the treatment's optimal fractionation schedules to elicit maximal tumor response while limiting the dose to adjacent structures. A small animal irradiator in combination with a clinically relevant oncological animal model could address these questions. Accurate delivery of X rays to animal tumors may be hampered by suboptimal image-guided targeting of the X-ray beam in vivo. Integration of bioluminescence imaging (BLI) into small animal irradiators in addition to standard cone-beam computed tomography (CBCT) imaging improves target identification and high-precision therapy delivery to deep tumors with poor soft tissue contrast, such as pancreatic tumors. Using bioluminescent BxPC3 pancreatic adenocarcinoma human cells grown orthotopically in mice, we examined the performance of a small animal irradiator equipped with both CBCT and BLI in delivering targeted, hypo-fractionated, multi-beam SBRT. Its targeting accuracy was compared with magnetic resonance imaging (MRI)-guided targeting based on co-registration between CBCT and corresponding sequential magnetic resonance scans, which offer greater soft tissue contrast compared with CT alone. Evaluation of our platform's BLI-guided targeting accuracy was performed by quantifying in vivo changes in bioluminescence signal after treatment as well as staining of ex vivo tissues with γH2AX, Ki67, TUNEL, CD31 and CD11b to assess SBRT treatment effects. Using our platform, we found that BLI-guided SBRT enabled more accurate delivery of X rays to the tumor resulting in greater cancer cell DNA damage and proliferation inhibition compared with MRI-guided SBRT. Furthermore, BLI-guided SBRT allowed higher animal throughput and was more cost effective to use in the preclinical setting than MRI-guided SBRT. Taken together, our preclinical platform could be employed in translational research of SBRT of pancreatic cancer.


Assuntos
Adenocarcinoma , Neoplasias Pancreáticas , Radiocirurgia , Radioterapia Guiada por Imagem , Animais , Tomografia Computadorizada de Feixe Cônico/métodos , Camundongos , Neoplasias Pancreáticas/diagnóstico por imagem , Neoplasias Pancreáticas/radioterapia , Planejamento da Radioterapia Assistida por Computador , Radioterapia Guiada por Imagem/métodos , Neoplasias Pancreáticas
16.
Biomacromolecules ; 12(9): 3115-8, 2011 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-21777008

RESUMO

We demonstrate that porphyrins can be used as efficient cross-linkers to generate a new class of hydrogels with enabling optical properties. Tetracarboxylic acid porphyrins reacted with PEG diamines to form a condensation polyamide in a range of appropriate conditions, with respect to reaction time, diisopropylethylamine initiator concentration, porphyrin-to-PEG ratio, porphyrin concentration, and PEG size. The network structure of the hydrogel maintained a porphyrin spacing that prevented excessive fluorescence self-quenching despite high porphyrin density. The near-infrared properties readily enabled low background, noninvasive fluorescence monitoring of the implanted hydrogel in vivo, as well as its image-guided surgical removal in real time using a low-cost fluorescence camera prototype. Emission could be tuned by incorporating copper metalloporphyrins into the network. The approach of creating hydrogels using cross-linking porphyrin comonomers creates opportunities for new polymer designs with strong optical character.


Assuntos
Hidrogéis/química , Imagem Molecular/métodos , Nylons/química , Polietilenoglicóis/química , Porfirinas/química , Cirurgia Assistida por Computador , Animais , Cobre/química , Cobre/metabolismo , Reagentes de Ligações Cruzadas/química , Etilaminas/química , Camundongos , Polímeros/química , Espectrometria de Fluorescência , Espectrofotometria Infravermelho , Cirurgia Assistida por Computador/instrumentação , Cirurgia Assistida por Computador/métodos
17.
Biomaterials ; 273: 120837, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33930737

RESUMO

Surface topography drives the success of orthopedic and dental implants placed in bone, by directing the biology occurring at the tissue-implant interface. Over the last few decades, striking advancements have been made in the development of novel implant surfaces that enhance bone anchorage to their surfaces through contact osteogenesis: the combination of the two phenomena of recruitment and migration of mesenchymal progenitor cells to the implant surface, and their differentiation into bone-forming cells. While the latter is generally understood, the mechanisms and dynamics underlying the migration and recruitment of such progenitor cells into the wound site have garnered little attention. To address this deficit, we surgically inserted metallic implants with two different surface topographies into the skulls of mice, and then employed real-time spatiotemporal microscopic monitoring of the peri-implant tissue healing to track the ingress of cells. Our results show that nano-topographically complex, in comparison to relatively smooth, implant surfaces profoundly affect recruitment of both endothelial cells, which are essential for angiogenesis, and the mesenchymal progenitor cells that give rise to the reparative tissue stroma. The latter appear concomitantly in the wound site with endothelial cells, from the vascularized areas of the periosteum, and demonstrate a proliferative "bloom" that diminishes with time, although some of these cells differentiate into important stromal cells, pericytes and osteocytes, of the reparative wound. In separate experiments we show, using trajectory plots, that the directionality of migration for both endothelial and perivascular cells can be explained by implant surface dependent release of local cytokine gradients from platelets that would become activated on the implant surfaces during initial blood contact. These findings provide new biological insights into the earliest stages of wound healing, and have broad implications in the application of putative nano-topographically complex biomaterials in many tissue types.


Assuntos
Implantes Dentários , Células-Tronco Mesenquimais , Animais , Células Endoteliais , Microscopia Intravital , Camundongos , Osseointegração , Osteogênese , Propriedades de Superfície , Titânio , Cicatrização
18.
Future Microbiol ; 15: 319-332, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32101035

RESUMO

Aim: Fluorescence imaging can visualize polymicrobial populations in chronic and acute wounds based on porphyrin fluorescence. We investigated the fluorescent properties of specific wound pathogens and the fluorescence detected from bacteria in biofilm. Methods: Utilizing Remel Porphyrin Test Agar, 32 bacterial and four yeast species were examined for red fluorescence under 405 nm violet light illumination. Polymicrobial biofilms, supplemented with δ-aminolevulinic acid, were investigated similarly. Results: A total of 28/32 bacteria, 1/4 yeast species and polymicrobial biofilms produced red fluorescence, in agreement with their known porphyrin production abilities. Conclusion: These results identify common wound pathogens capable of producing porphyrin-specific fluorescence and support clinical observations using fluorescence imaging to detect pathogenic bacteria in chronic wounds.


Assuntos
Bactérias/isolamento & purificação , Imagem Óptica/métodos , Porfirinas/metabolismo , Ferimentos e Lesões/microbiologia , Bactérias/química , Bactérias/metabolismo , Biofilmes , Fluorescência , Humanos , Porfirinas/química
19.
Biomaterials ; 256: 120183, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32622017

RESUMO

Recently reported biomaterial-based approaches toward prevascularizing tissue constructs rely on biologically or structurally complex scaffolds that are complicated to manufacture and sterilize, and challenging to customize for clinical applications. In the current work, a prevascularization method for soft tissue engineering that uses a non-patterned and non-biological scaffold is proposed. Human fibroblasts and HUVECs were seeded on an ionomeric polyurethane-based hydrogel and cultured for 14 days under medium perfusion. A flow rate of 0.05 mL/min resulted in a greater lumen density in the constructs relative to 0.005 and 0.5 mL/min, indicating the critical importance of flow magnitude in establishing microvessels. Constructs generated at 0.05 mL/min perfusion flow were implanted in a mouse subcutaneous model and intravital imaging was used to characterize host blood perfusion through the construct after 2 weeks. Engineered microvessels were functional (i.e. perfused with host blood and non-leaky) and neovascularization of the construct by host vessels was enhanced relative to non-prevascularized constructs. We report on the first strategy toward engineering functional microvessels in a tissue construct using non-bioactive, non-patterned synthetic polyurethane materials.


Assuntos
Poliuretanos , Alicerces Teciduais , Microvasos , Neovascularização Fisiológica , Perfusão , Engenharia Tecidual
20.
Commun Biol ; 1: 72, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30271953

RESUMO

Nanosurfaces have improved clinical osseointegration by increasing bone/implant contact. Neovascularization is considered an essential prerequisite to osteogenesis, but no previous reports to our knowledge have examined the effect of surface topography on the spatio-temporal pattern of neovascularization during peri-implant healing. We have developed a cranial window model to study peri-implant healing intravitally over clinically relevant time scales as a function of implant topography. Quantitative intravital confocal imaging reveals that changing the topography (but not chemical composition) of an implant profoundly affects the pattern of peri-implant neovascularization. New vessels develop proximal to the implant and the vascular network matures sooner in the presence of an implant nanosurface. Accelerated angiogenesis can lead to earlier osseointegration through the delivery of osteogenic precursors to, and direct formation of bone on, the implant surface. This study highlights a critical aspect of peri-implant healing, but also informs the biological rationale for the surface design of putative endosseous implant materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA