Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biochemistry ; 51(13): 2867-78, 2012 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-22413880

RESUMO

Fusion of the human immunodeficiency virus (HIV) with target cells is mediated by the gp41 subunit of the envelope protein. Mutation and deletion studies within the transmembrane domain (TMD) of intact gp41 influenced its fusion activity. In addition, current models suggest that the TMD is in proximity with the fusion peptide (FP) at the late fusion stages, but there are no direct experimental data to support this hypothesis. Here, we investigated the TMD focusing on two regions: the N-terminal containing the GxxxG motif and the C-terminal containing the GLRI motif, which is conserved among the TMDs of HIV and the T-cell receptor. Studies utilizing the ToxR expression system combined with synthetic peptides and their fluorescent analogues derived from TMD revealed that the GxxxG motif is important for TMD self-association, whereas the C-terminal region is for its heteroassociation with FP. Functionally, all three TMD peptides induced lipid mixing that was enhanced significantly upon mixing with FP. Furthermore, the TMD peptides inhibited virus-cell fusion apparently through their interaction with their endogenous counterparts. Notably, the R2E mutant (in the GLRI) was significantly less potent than the two others. Overall, our findings provide experimental evidence that HIV-1 TMD contributes to membrane assembly and function of the HIV-1 envelope. Owing to similarities between functional domains within viruses, these findings suggest that the TMDs and FPs may contribute similarly in other viruses as well.


Assuntos
Proteína gp41 do Envelope de HIV/metabolismo , Fusão de Membrana , Sequência de Aminoácidos , Transferência Ressonante de Energia de Fluorescência , Corantes Fluorescentes/química , Proteína gp41 do Envelope de HIV/química , Humanos , Dados de Sequência Molecular
2.
J Biol Chem ; 286(51): 44104-44115, 2011 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-21965653

RESUMO

Ubiquitin-conjugating enzymes (E2s) have a dominant role in determining which of the seven lysine residues of ubiquitin is used for polyubiquitination. Here we show that tethering of a substrate to an E2 enzyme in the absence of an E3 ubiquitin ligase is sufficient to promote its ubiquitination, whereas the type of the ubiquitin conjugates and the identity of the target lysine on the substrate are promiscuous. In contrast, when an E3 enzyme is introduced, a clear decision between mono- and polyubiquitination is made, and the conjugation type as well as the identity of the target lysine residue on the substrate becomes highly specific. These features of the E3 can be further regulated by auxiliary factors as exemplified by MDMX (Murine Double Minute X). In fact, we show that this interactor reconfigures MDM2-dependent ubiquitination of p53. Based on several model systems, we propose that although interaction with an E2 is sufficient to promote substrate ubiquitination the E3 molds the reaction into a specific, physiologically relevant protein modification.


Assuntos
Enzimas de Conjugação de Ubiquitina/química , Ubiquitina-Proteína Ligases/química , Ubiquitina/química , Proteínas de Ciclo Celular , Cromatografia Líquida/métodos , Genes p53 , Humanos , Lisina/química , Proteínas Nucleares/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/química , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Espectrometria de Massas em Tandem/métodos , Proteína Supressora de Tumor p53/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA