Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Immunity ; 53(2): 442-455.e4, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32668194

RESUMO

We profiled adaptive immunity in COVID-19 patients with active infection or after recovery and created a repository of currently >14 million B and T cell receptor (BCR and TCR) sequences from the blood of these patients. The B cell response showed converging IGHV3-driven BCR clusters closely associated with SARS-CoV-2 antibodies. Clonality and skewing of TCR repertoires were associated with interferon type I and III responses, early CD4+ and CD8+ T cell activation, and counterregulation by the co-receptors BTLA, Tim-3, PD-1, TIGIT, and CD73. Tfh, Th17-like, and nonconventional (but not classical antiviral) Th1 cell polarizations were induced. SARS-CoV-2-specific T cell responses were driven by TCR clusters shared between patients with a characteristic trajectory of clonotypes and traceability over the disease course. Our data provide fundamental insight into adaptive immunity to SARS-CoV-2 with the actively updated repository providing a resource for the scientific community urgently needed to inform therapeutic concepts and vaccine development.


Assuntos
Infecções por Coronavirus , Citocinas , Sequenciamento de Nucleotídeos em Larga Escala , Pandemias , Pneumonia Viral , Betacoronavirus , COVID-19 , Humanos , Receptores de Antígenos de Linfócitos B/genética , SARS-CoV-2 , Índice de Gravidade de Doença
2.
J Infect Dis ; 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38195212

RESUMO

Licensed vaccines against the Middle East respiratory syndrome coronavirus (MERS-CoV), an emerging pathogen of concern, are lacking. The Modified Vaccinia virus Ankara vector-based vaccine MVA-MERS-S, expressing the MERS-CoV-spike glycoprotein (MERS-S), is one of three candidate vaccines in clinical development and elicits robust humoral and cellular immunity. Here, we identified for the first time a MERS-S-specific CD8+ T-cell epitope in an HLA-A*03:01/HLA-B*35:01-positive vaccinee using a screening assay, intracellular cytokine staining, and in silico epitope prediction. As evidence from MERS-CoV infection suggests a protective role of long-lasting CD8+ T-cell responses, the identification of epitopes will facilitate longitudinal analyses of vaccine-induced T-cell immunity.

3.
Eur J Haematol ; 112(5): 788-793, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38311570

RESUMO

OBJECTIVE: Preventing severe COVID-19 remains a priority globally, particularly in the immunocompromised population. As shown in healthy individuals, immunity against SARS-CoV-2 can be yielded by previous infection, vaccination, or both (hybrid immunity). The objective of this observation study was to investigate hybrid immunity in patients with chronic lymphocytic leukemia (CLL). METHODS/RESULTS: Blood samples of six patients with CLL were collected 55 days after fourth COVID-19 vaccination. All patients had a SARS-CoV-2 infection within 12 months before the second booster (fourth vaccination). SARS-CoV-2 spike receptor binding domain (RBD)-specific IgG antibodies were detectable in 6/6 (100.0%) CLL patients after four compared to 4/6 (66.7%) after three vaccinations. The median number of SARS-CoV-2 spike-specific T cells after repeated booster vaccination plus infection was 166 spot-forming cells (SFC) per million peripheral blood mononuclear cells. Overall, 5/5 (100%) studied patients showed a detectable increase in T cell activity. CONCLUSION: Our data reveal an increase of cellular and humoral immune response in CLL patients after fourth COVID-19 vaccination combined with SARS-CoV-2 infection, even in those undergoing B cell-depleting treatment. Patients with prior vaccination failure now show a specific IgG response. Future research should explore the duration and effectiveness of hybrid immunity considering various factors like past infection and vaccination rates, types and numbers of doses, and emerging variants.


Assuntos
COVID-19 , Leucemia Linfocítica Crônica de Células B , Humanos , SARS-CoV-2 , Leucemia Linfocítica Crônica de Células B/complicações , Leucemia Linfocítica Crônica de Células B/terapia , Vacinas contra COVID-19 , Leucócitos Mononucleares , Imunoglobulina G , Complicações Pós-Operatórias , Vacinação , Imunidade Adaptativa , Anticorpos Antivirais
4.
J Infect Dis ; 228(5): 586-590, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-36857443

RESUMO

Modified vaccinia virus Ankara (MVA) is used as a vaccine against monkeypox virus and as a viral vaccine vector. MVA-MERS-S is a vaccine candidate against Middle East respiratory syndrome (MERS)-associated coronavirus. Here, we report that cross-reactive monkeypox virus neutralizing antibodies were detectable in only a single study participant after the first dose of MVA-MERS-S vaccine, in 3 of 10 after the second dose, and in 10 of 10 after the third dose.


Assuntos
Infecções por Coronavirus , Coronavírus da Síndrome Respiratória do Oriente Médio , Vacinas Virais , Humanos , Anticorpos Amplamente Neutralizantes , Glicoproteína da Espícula de Coronavírus , Monkeypox virus , Anticorpos Antivirais , Vaccinia virus/genética , Infecções por Coronavirus/prevenção & controle , Anticorpos Neutralizantes
5.
J Proteome Res ; 19(11): 4339-4354, 2020 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-32892628

RESUMO

Emergence and re-emergence of pathogens bearing the risk of becoming a pandemic threat are on the rise. Increased travel and trade, growing population density, changes in urbanization, and climate have a critical impact on infectious disease spread. Currently, the world is confronted with the emergence of a novel coronavirus SARS-CoV-2, responsible for yet more than 800 000 deaths globally. Outbreaks caused by viruses, such as SARS-CoV-2, HIV, Ebola, influenza, and Zika, have increased over the past decade, underlining the need for a rapid development of diagnostics and vaccines. Hence, the rational identification of biomarkers for diagnostic measures on the one hand, and antigenic targets for vaccine development on the other, are of utmost importance. Peptide microarrays can display large numbers of putative target proteins translated into overlapping linear (and cyclic) peptides for a multiplexed, high-throughput antibody analysis. This enabled for example the identification of discriminant/diagnostic epitopes in Zika or influenza and mapping epitope evolution in natural infections versus vaccinations. In this review, we highlight synthesis platforms that facilitate fast and flexible generation of high-density peptide microarrays. We further outline the multifaceted applications of these peptide array platforms for the development of serological tests and vaccines to quickly encounter pandemic threats.


Assuntos
Doenças Transmissíveis , Mapeamento de Epitopos , Epitopos , Pandemias , Análise Serial de Proteínas/métodos , Betacoronavirus , Teste para COVID-19 , Técnicas de Laboratório Clínico , Doenças Transmissíveis/imunologia , Doenças Transmissíveis/terapia , Infecções por Coronavirus/diagnóstico , Infecções por Coronavirus/prevenção & controle , Infecções por Coronavirus/virologia , Epitopos/química , Epitopos/imunologia , Ensaios de Triagem em Larga Escala , Humanos , SARS-CoV-2 , Fatores de Tempo
6.
PLoS Pathog ; 14(7): e1007156, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-30048533

RESUMO

MicroRNAs (miRNAs) are small RNAs that regulate diverse biological processes including multiple aspects of the host-pathogen interface. Consequently, miRNAs are commonly encoded by viruses that undergo long-term persistent infection. Papillomaviruses (PVs) are capable of undergoing persistent infection, but as yet, no widely-accepted PV-encoded miRNAs have been described. The incomplete understanding of PV-encoded miRNAs is due in part to lack of tractable laboratory models for most PV types. To overcome this, we have developed miRNA Discovery by forced Genome Expression (miDGE), a new wet bench approach to miRNA identification that screens numerous pathogen genomes in parallel. Using miDGE, we screened over 73 different PV genomes for the ability to code for miRNAs. Our results show that most PVs are unlikely to code for miRNAs and we conclusively demonstrate a lack of PV miRNA expression in cancers associated with infections of several high risk HPVs. However, we identified five different high-confidence or highly probable miRNAs encoded by four different PVs (Human PVs 17, 37, 41 and a Fringilla coelebs PV (FcPV1)). Extensive in vitro assays confirm the validity of these miRNAs in cell culture and two FcPV1 miRNAs are further confirmed to be expressed in vivo in a natural host. We show that miRNAs from two PVs (HPV41 & FcPV1) are able to regulate viral transcripts corresponding to the early region of the PV genome. Combined, these findings identify the first canonical PV miRNAs and support that miRNAs of either host or viral origin are important regulators of the PV life cycle.


Assuntos
Perfilação da Expressão Gênica/métodos , Regulação Viral da Expressão Gênica/genética , MicroRNAs/genética , Papillomaviridae/genética , RNA Viral/análise , Células HEK293 , Humanos , Infecções por Papillomavirus/genética , RNA Viral/genética , Transcriptoma
7.
J Infect Dis ; 219(4): 556-561, 2019 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-30452666

RESUMO

In response to the Ebola virus (EBOV) crisis of 2013-2016, a recombinant vesicular stomatitis virus (VSV)-based EBOV vaccine was clinically tested (NCT02283099). A single-dose regimen of VSV-EBOV revealed a safe and immunogenic profile and demonstrated clinical efficacy. While EBOV-specific immune responses to this candidate vaccine have previously been investigated, limited human data on immunity to the VSV vector are available. Within the scope of a phase 1 study, we performed a comprehensive longitudinal analysis of adaptive immune responses to internal VSV proteins following VSV-EBOV immunization. While no preexisting immunity to the vector was observed, more than one-third of subjects developed VSV-specific cytotoxic T-lymphocyte responses and antibodies.


Assuntos
Formação de Anticorpos , Vacinas contra Ebola/imunologia , Imunidade Celular , Vesiculovirus/imunologia , Adulto , Vacinas contra Ebola/administração & dosagem , Humanos , Estudos Longitudinais , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/imunologia
8.
N Engl J Med ; 374(17): 1647-60, 2016 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-25830326

RESUMO

BACKGROUND: The replication-competent recombinant vesicular stomatitis virus (rVSV)-based vaccine expressing a Zaire ebolavirus (ZEBOV) glycoprotein was selected for rapid safety and immunogenicity testing before its use in West Africa. METHODS: We performed three open-label, dose-escalation phase 1 trials and one randomized, double-blind, controlled phase 1 trial to assess the safety, side-effect profile, and immunogenicity of rVSV-ZEBOV at various doses in 158 healthy adults in Europe and Africa. All participants were injected with doses of vaccine ranging from 300,000 to 50 million plaque-forming units (PFU) or placebo. RESULTS: No serious vaccine-related adverse events were reported. Mild-to-moderate early-onset reactogenicity was frequent but transient (median, 1 day). Fever was observed in up to 30% of vaccinees. Vaccine viremia was detected within 3 days in 123 of the 130 participants (95%) receiving 3 million PFU or more; rVSV was not detected in saliva or urine. In the second week after injection, arthritis affecting one to four joints developed in 11 of 51 participants (22%) in Geneva, with pain lasting a median of 8 days (interquartile range, 4 to 87); 2 self-limited cases occurred in 60 participants (3%) in Hamburg, Germany, and Kilifi, Kenya. The virus was identified in one synovial-fluid aspirate and in skin vesicles of 2 other vaccinees, showing peripheral viral replication in the second week after immunization. ZEBOV-glycoprotein-specific antibody responses were detected in all the participants, with similar glycoprotein-binding antibody titers but significantly higher neutralizing antibody titers at higher doses. Glycoprotein-binding antibody titers were sustained through 180 days in all participants. CONCLUSIONS: In these studies, rVSV-ZEBOV was reactogenic but immunogenic after a single dose and warrants further evaluation for safety and efficacy. (Funded by the Wellcome Trust and others; ClinicalTrials.gov numbers, NCT02283099, NCT02287480, and NCT02296983; Pan African Clinical Trials Registry number, PACTR201411000919191.).


Assuntos
Vacinas contra Ebola/imunologia , Ebolavirus/imunologia , Doença pelo Vírus Ebola/prevenção & controle , Glicoproteínas de Membrana/imunologia , Proteínas do Envelope Viral/imunologia , Adulto , Anticorpos Antivirais/sangue , Artrite/etiologia , Dermatite/etiologia , Método Duplo-Cego , Vacinas contra Ebola/administração & dosagem , Vacinas contra Ebola/efeitos adversos , Ebolavirus/isolamento & purificação , Exantema/etiologia , Feminino , Doença pelo Vírus Ebola/imunologia , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas Recombinantes , Vesiculovirus , Viremia , Eliminação de Partículas Virais
9.
J Infect Dis ; 215(2): 287-292, 2017 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-27799354

RESUMO

The West African Ebola virus disease (EVD) outbreak was the largest EVD outbreak in history. However, data on lymphocyte dynamics and the antigen specificity of T cells in Ebola survivors are scarce, and our understanding of EVD pathophysiology is limited. A case of EVD survival in which the patient cleared Ebola virus (EBOV) infection without experimental drugs allowed for the detailed examination of lymphocyte dynamics. We demonstrate the persistence of T-cell activation well beyond viral clearance and detect EBOV-specific T cells. Our study provides significant insights into lymphocyte specificity during the recovery phase of EVD and may inform novel strategies to treat EVD.


Assuntos
Ebolavirus/imunologia , Doença pelo Vírus Ebola/imunologia , Imunidade Celular , Humanos , Ativação Linfocitária , Linfócitos T/imunologia
11.
NPJ Vaccines ; 9(1): 20, 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38278816

RESUMO

In response to the COVID-19 pandemic, multiple vaccines were developed using platforms such as viral vectors and mRNA technology. Here, we report humoral and cellular immunogenicity data from human phase 1 clinical trials investigating two recombinant Modified Vaccinia virus Ankara vaccine candidates, MVA-SARS-2-S and MVA-SARS-2-ST, encoding the native and the prefusion-stabilized SARS-CoV-2 spike protein, respectively. MVA-SARS-2-ST was more immunogenic than MVA-SARS-2-S, but both were less immunogenic compared to licensed mRNA- and ChAd-based vaccines in SARS-CoV-2 naïve individuals. In heterologous vaccination, previous MVA-SARS-2-S vaccination enhanced T cell functionality and MVA-SARS-2-ST boosted the frequency of T cells and S1-specific IgG levels when used as a third vaccination. While the vaccine candidate containing the prefusion-stabilized spike elicited predominantly S1-specific responses, immunity to the candidate with the native spike was skewed towards S2-specific responses. These data demonstrate how the spike antigen conformation, using the same viral vector, directly affects vaccine immunogenicity in humans.

12.
Commun Med (Lond) ; 3(1): 51, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37041310

RESUMO

BACKGROUND: The clinical course of COVID-19 patients ranges from asymptomatic infection, via mild and moderate illness, to severe disease and even fatal outcome. Biomarkers which enable an early prediction of the severity of COVID-19 progression, would be enormously beneficial to guide patient care and early intervention prior to hospitalization. METHODS: Here we describe the identification of plasma protein biomarkers using an antibody microarray-based approach in order to predict a severe cause of a COVID-19 disease already in an early phase of SARS-CoV-2 infection. To this end, plasma samples from two independent cohorts were analyzed by antibody microarrays targeting up to 998 different proteins. RESULTS: In total, we identified 11 promising protein biomarker candidates to predict disease severity during an early phase of COVID-19 infection coherently in both analyzed cohorts. A set of four (S100A8/A9, TSP1, FINC, IFNL1), and two sets of three proteins (S100A8/A9, TSP1, ERBB2 and S100A8/A9, TSP1, IFNL1) were selected using machine learning as multimarker panels with sufficient accuracy for the implementation in a prognostic test. CONCLUSIONS: Using these biomarkers, patients at high risk of developing a severe or critical disease may be selected for treatment with specialized therapeutic options such as neutralizing antibodies or antivirals. Early therapy through early stratification may not only have a positive impact on the outcome of individual COVID-19 patients but could additionally prevent hospitals from being overwhelmed in potential future pandemic situations.


We aimed to identify components of the blood present during the early phase of SARS-CoV-2 infection that distinguish people who are likely to develop severe symptoms of COVID-19. Blood from people who later developed a mild or moderate course of disease were compared to blood from people who later had a severe or critical course of disease. Here, we identified a combination of three proteins that were present in the blood of patients with COVID-19 who later developed a severe or critical disease. Identifying the presence of these proteins in patients at an early stage of infection could enable physicians to treat these patients early on to avoid progression of the disease.

13.
STAR Protoc ; 3(4): 101902, 2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-36595922

RESUMO

Memory B cells (MBCs), part of the immune response elicited by infection or vaccination, can persist in lymphoid organs and peripheral blood and are capable of rapid reactivation upon secondary antigen exposure. Here, we describe a flow cytometric assay to identify antigen-specific MBCs from peripheral blood mononuclear cells and characterize their isotypes and activation status. We detail steps to use fluorescently labeled antigen probes derived from the SARS-CoV-2 spike protein. These can be adapted to detect MBCs against other antigens. For complete details on the use and execution of this protocol, please refer to Weskamm et al. (2022).1.


Assuntos
COVID-19 , Glicoproteína da Espícula de Coronavírus , Humanos , Leucócitos Mononucleares , Células B de Memória , SARS-CoV-2
14.
Cell Rep Med ; 3(7): 100685, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35858586

RESUMO

The Middle East respiratory syndrome (MERS) is a respiratory disease caused by MERS coronavirus (MERS-CoV). In follow up to a phase 1 trial, we perform a longitudinal analysis of immune responses following immunization with the modified vaccinia virus Ankara (MVA)-based vaccine MVA-MERS-S encoding the MERS-CoV-spike protein. Three homologous immunizations were administered on days 0 and 28 with a late booster vaccination at 12 ± 4 months. Antibody isotypes, subclasses, and neutralization capacity as well as T and B cell responses were monitored over a period of 3 years using standard and bead-based enzyme-linked immunosorbent assay (ELISA), 50% plaque-reduction neutralization test (PRNT50), enzyme-linked immunospot (ELISpot), and flow cytometry. The late booster immunization significantly increases the frequency and persistence of spike-specific B cells, binding immunoglobulin G1 (IgG1) and neutralizing antibodies but not T cell responses. Our data highlight the potential of a late boost to enhance long-term antibody and B cell immunity against MERS-CoV. Our findings on the MVA-MERS-S vaccine may be of relevance for coronavirus 2019 (COVID-19) vaccination strategies.


Assuntos
COVID-19 , Coronavírus da Síndrome Respiratória do Oriente Médio , Vacinas Virais , Anticorpos Antivirais , COVID-19/prevenção & controle , Ensaios Clínicos Fase I como Assunto , Seguimentos , Humanos , Vacinação , Vaccinia virus
15.
Emerg Microbes Infect ; 11(1): 1037-1048, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35320064

RESUMO

The coronavirus SARS-CoV-2 is the causative agent for the disease COVID-19. To capture the IgA, IgG, and IgM antibody response of patients infected with SARS-CoV-2 at individual epitope resolution, we constructed planar microarrays of 648 overlapping peptides that cover the four major structural proteins S(pike), N(ucleocapsid), M(embrane), and E(nvelope). The arrays were incubated with sera of 67 SARS-CoV-2 positive and 22 negative control samples. Specific responses to SARS-CoV-2 were detectable, and nine peptides were associated with a more severe course of the disease. A random forest model disclosed that antibody binding to 21 peptides, mostly localized in the S protein, was associated with higher neutralization values in cellular anti-SARS-CoV-2 assays. For antibodies addressing the N-terminus of M, or peptides close to the fusion region of S, protective effects were proven by antibody depletion and neutralization assays. The study pinpoints unusual viral binding epitopes that might be suited as vaccine candidates.


Assuntos
COVID-19 , SARS-CoV-2 , Anticorpos Neutralizantes , Anticorpos Antivirais , Formação de Anticorpos , Epitopos , Humanos , Aprendizado de Máquina , Peptídeos , Glicoproteína da Espícula de Coronavírus
16.
Nat Commun ; 13(1): 4182, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35853863

RESUMO

Vaccine development is essential for pandemic preparedness. We previously conducted a Phase 1 clinical trial of the vector vaccine candidate MVA-MERS-S against the Middle East respiratory syndrome coronavirus (MERS-CoV), expressing its full spike glycoprotein (MERS-CoV-S), as a homologous two-dose regimen (Days 0 and 28). Here, we evaluate the safety (primary objective) and immunogenicity (secondary and exploratory objectives: magnitude and characterization of vaccine-induced humoral responses) of a third vaccination with MVA-MERS-S in a subgroup of trial participants one year after primary immunization. MVA-MERS-S booster vaccination is safe and well-tolerated. Both binding and neutralizing anti-MERS-CoV antibody titers increase substantially in all participants and exceed maximum titers observed after primary immunization more than 10-fold. We identify four immunogenic IgG epitopes, located in the receptor-binding domain (RBD, n = 1) and the S2 subunit (n = 3) of MERS-CoV-S. The level of baseline anti-human coronavirus antibody titers does not impact the generation of anti-MERS-CoV antibody responses. Our data support the rationale of a booster vaccination with MVA-MERS-S and encourage further investigation in larger trials. Trial registration: Clinicaltrials.gov NCT03615911.


Assuntos
Infecções por Coronavirus , Coronavírus da Síndrome Respiratória do Oriente Médio , Vacinas Virais , Anticorpos Neutralizantes , Anticorpos Antivirais , Epitopos , Humanos , Imunoglobulina G , Glicoproteína da Espícula de Coronavírus , Vacinação
17.
J Clin Invest ; 132(24)2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36301637

RESUMO

The SARS-CoV-2 spike (S) glycoprotein is synthesized as a large precursor protein and must be activated by proteolytic cleavage into S1 and S2. A recombinant modified vaccinia virus Ankara (MVA) expressing native, full-length S protein (MVA-SARS-2-S) is currently under investigation as a candidate vaccine in phase I clinical studies. Initial results from immunogenicity monitoring revealed induction of S-specific antibodies binding to S2, but low-level antibody responses to the S1 domain. Follow-up investigations of native S antigen synthesis in MVA-SARS-2-S-infected cells revealed limited levels of S1 protein on the cell surface. In contrast, we found superior S1 cell surface presentation upon infection with a recombinant MVA expressing a stabilized version of SARS-CoV-2 S protein with an inactivated S1/S2 cleavage site and K986P and V987P mutations (MVA-SARS-2-ST). When comparing immunogenicity of MVA vector vaccines, mice vaccinated with MVA-SARS-2-ST mounted substantial levels of broadly reactive anti-S antibodies that effectively neutralized different SARS-CoV-2 variants. Importantly, intramuscular MVA-SARS-2-ST immunization of hamsters and mice resulted in potent immune responses upon challenge infection and protected from disease and severe lung pathology. Our results suggest that MVA-SARS-2-ST represents an improved clinical candidate vaccine and that the presence of plasma membrane-bound S1 is highly beneficial to induce protective antibody levels.


Assuntos
COVID-19 , Vacinas Virais , Humanos , Camundongos , Animais , Imunogenicidade da Vacina , SARS-CoV-2/genética , Vacinas Virais/genética , COVID-19/prevenção & controle , Vaccinia virus/genética , Anticorpos Antivirais , Anticorpos Neutralizantes
18.
Vaccines (Basel) ; 9(3)2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33801831

RESUMO

We are in the midst of a pandemic caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes the coronavirus disease 2019 (COVID-19). SARS-CoV-2 has caused more than two million deaths after one year of the pandemic. The world is experiencing a deep economic recession. Safe and effective vaccines are needed to prevent further morbidity and mortality. Vaccine candidates against COVID-19 have been developed at an unprecedented speed, with more than 200 vaccine candidates currently under investigation. Among those, 20 candidates have entered the clinical Phase 3 to evaluate efficacy, and three have been approved by the European Medicines Agency. The aim of immunization is to act against infection, disease and/or transmission. However, the measurement of vaccine efficacy is challenging, as efficacy trials need to include large cohorts with verum and placebo cohorts. In the future, this will be even more challenging as further vaccine candidates will receive approval, an increasing number of humans will receive vaccinations and incidence might decrease. To evaluate novel and second-generation vaccine candidates, randomized placebo-controlled trials might not be appropriate anymore. Correlates of protection (CoP) could be an important tool to evaluate novel vaccine candidates, but vaccine-induced CoP have not been clearly defined for SARS-CoV-2 vaccines. In this review, we report on immunogenicity against natural SARS-CoV-2 infection, vaccine-induced immune responses and discuss immunological markers that can be linked to protection. By discussing the immunogenicity and efficacy of forerunner vaccines, we aim to give a comprehensive overview of possible efficacy measures and CoP.

19.
J Immunol Methods ; 490: 112958, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33412174

RESUMO

The current Severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) pandemic is a public health emergency of international concern. Sensitive and precise diagnostic tools are urgently needed. In this study, we developed a SARS-CoV-2 spike (S1) protein enzyme-linked immunosorbent assay (ELISA) to detect SARS-CoV-2-specific antibodies. The SARS-CoV-2 S1 ELISA was found to be specific [97.8% (95% CI, 96.7% - 98.5%)], reproducible and precise (intra-assay coefficient of variability (CV) 5.3%, inter-assay CV 7.9%). A standard curve and the interpolation of arbitrary ELISA units per milliliter served to reduce the variability between different tests and operators. Cross-reactivity to other human coronaviruses was addressed by using sera positive for MERS-CoV- and hCoV HKU1-specific antibodies. Monitoring antibody development in various samples of twenty-three and single samples of twenty-nine coronavirus disease 2019 (COVID-19) patients revealed seroconversion and neutralizing antibodies against authentic SARS-CoV-2 in all cases. The comparison of the SARS-CoV-2 (S1) ELISA with a commercially available assay showed a better sensitivity for the in-house ELISA. The results demonstrate a high reproducibility, specificity and sensitivity of the newly developed ELISA, which is suitable for the detection of SARS-CoV-2 S1 protein-specific antibody responses.


Assuntos
Teste Sorológico para COVID-19/métodos , COVID-19/diagnóstico , Células Epiteliais/metabolismo , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , Animais , Anticorpos Neutralizantes/sangue , Chlorocebus aethiops , Ensaios Enzimáticos , Ensaio de Imunoadsorção Enzimática , Humanos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Soroconversão , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Células Vero
20.
Mol Ther Methods Clin Dev ; 23: 418-423, 2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34786434

RESUMO

Vaccination with the adenoviral-vector-based AstraZeneca ChAdOx1 nCov-19 (Vaxzevria) vaccine is efficient and safe. However, in rare cases vaccinated individuals developed life-threatening thrombotic complications, including thrombosis in cerebral sinus and splanchnic veins. Monitoring of the applied vector in vivo represents an important precondition to study the molecular mechanisms underlying vaccine-driven adverse effects now referred to as vaccine-induced immune thrombotic thrombocytopenia (VITT). We previously have shown that digital PCR (dPCR) is an excellent tool to quantify transgene copies in vivo. Here, we present a highly sensitive dPCR for in situ quantification of ChAdOx1 nCoV-19 copies. Using this method, we quantified vector copies in human plasma 24, 72, and 168 h post vaccination and in a variety of murine tissues in an experimental vaccination model 30 min post injection. We describe a method for high-sensitivity quantitative detection of ChAdOx1 nCoV-19 with possible implications to elucidate the mechanisms of severe ChAdOx1 nCov-19 vaccine complications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA