Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biomacromolecules ; 17(11): 3724-3731, 2016 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-27744681

RESUMO

Porous silicon (pSi) substrates are a promising platform for cell expansion, since pore size and chemistry can be tuned to control cell behavior. In addition, a variety of bioactives can be loaded into the pores and subsequently released to act on cells adherent to the substrate. Here, we construct a cell microarray on a plasma polymer coated pSi substrate that enables the simultaneous culture of human endothelial cells on printed immobilized protein factors, while a second soluble growth factor is released from the same substrate. This allows three elements of candidate pSi scaffold materials-topography, surface functionalization, and controlled factor release-to be assessed simultaneously in high throughput. We show that protein conjugation within printed microarray spots is more uniform on the pSi substrate than on flat glass or silicon surfaces. Active growth factors are released from the pSi surface over a period of several days. Using an endothelial progenitor cell line, we investigate changes in cell behavior in response to the microenvironment. This platform facilitates the design of advanced functional biomaterials, including scaffolds, and carriers for regenerative medicine and cell therapy.


Assuntos
Materiais Biocompatíveis/química , Sistemas de Liberação de Medicamentos , Células Endoteliais/efeitos dos fármacos , Polímeros/química , Materiais Biocompatíveis/farmacologia , Proliferação de Células/efeitos dos fármacos , Células Endoteliais/química , Humanos , Polímeros/farmacologia , Porosidade , Silício/química , Análise Serial de Tecidos
2.
J Biomed Mater Res A ; 103(7): 2203-13, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24733741

RESUMO

Extracellular environments can regulate cell behavior because cells can actively sense their mechanical environments. This study evaluated the adhesion, proliferation and morphology of endothelial cells on polydimethylsiloxane (PDMS)/alumina (Al2 O3 ) composites and pure PDMS. The substrates were prepared from pure PDMS and its composites with 2.5, 5, 7.5, and 10 wt % Al2 O3 at a curing temperature of 50°C for 4 h. The substrates were then characterized by mechanical, structural, and morphological analyses. The cell adhesion, proliferation, and morphology of cultured bovine aortic endothelial (BAEC) cells on substrate materials were evaluated by using resazurin assay and 1,1'-dioctadecyl-1,3,3,3',3'-tetramethylindocarbocyanine perchlorate-acetylated LDL (Dil-Ac-LDL) cell staining, respectively. The composites (PDMS/2.5, 5, 7.5, and 10 wt % Al2 O3 ) exhibited higher stiffness than the pure PDMS substrate. The results also revealed that stiffer substrates promoted endothelial cell adhesion and proliferation and also induced spread morphology in the endothelial cells compared with lesser stiff substrates. Statistical analysis showed that the effect of time on cell proliferation depended on stiffness. Therefore, this study concludes that the addition of different Al2 O3 percentages to PDMS elevated substrate stiffness which in turn increased endothelial cell adhesion and proliferation significantly and induced spindle shape morphology in endothelial cells.


Assuntos
Adesão Celular , Proliferação de Células , Dimetilpolisiloxanos/química , Elastômeros/química , Endotélio Vascular/citologia , Animais , Bovinos , Cristalografia por Raios X , Microscopia de Força Atômica , Microscopia Eletrônica de Varredura , Espectroscopia de Infravermelho com Transformada de Fourier
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA