Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Cell ; 183(4): 935-953.e19, 2020 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-33186530

RESUMO

Neurons are frequently classified into distinct types on the basis of structural, physiological, or genetic attributes. To better constrain the definition of neuronal cell types, we characterized the transcriptomes and intrinsic physiological properties of over 4,200 mouse visual cortical GABAergic interneurons and reconstructed the local morphologies of 517 of those neurons. We find that most transcriptomic types (t-types) occupy specific laminar positions within visual cortex, and, for most types, the cells mapping to a t-type exhibit consistent electrophysiological and morphological properties. These properties display both discrete and continuous variation among t-types. Through multimodal integrated analysis, we define 28 met-types that have congruent morphological, electrophysiological, and transcriptomic properties and robust mutual predictability. We identify layer-specific axon innervation pattern as a defining feature distinguishing different met-types. These met-types represent a unified definition of cortical GABAergic interneuron types, providing a systematic framework to capture existing knowledge and bridge future analyses across different modalities.


Assuntos
Córtex Cerebral/citologia , Fenômenos Eletrofisiológicos , Neurônios GABAérgicos/citologia , Neurônios GABAérgicos/metabolismo , Transcriptoma/genética , Animais , Feminino , Perfilação da Expressão Gênica , Hipocampo/fisiologia , Canais Iônicos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/metabolismo
2.
Nature ; 598(7879): 174-181, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34616072

RESUMO

Dendritic and axonal morphology reflects the input and output of neurons and is a defining feature of neuronal types1,2, yet our knowledge of its diversity remains limited. Here, to systematically examine complete single-neuron morphologies on a brain-wide scale, we established a pipeline encompassing sparse labelling, whole-brain imaging, reconstruction, registration and analysis. We fully reconstructed 1,741 neurons from cortex, claustrum, thalamus, striatum and other brain regions in mice. We identified 11 major projection neuron types with distinct morphological features and corresponding transcriptomic identities. Extensive projectional diversity was found within each of these major types, on the basis of which some types were clustered into more refined subtypes. This diversity follows a set of generalizable principles that govern long-range axonal projections at different levels, including molecular correspondence, divergent or convergent projection, axon termination pattern, regional specificity, topography, and individual cell variability. Although clear concordance with transcriptomic profiles is evident at the level of major projection type, fine-grained morphological diversity often does not readily correlate with transcriptomic subtypes derived from unsupervised clustering, highlighting the need for single-cell cross-modality studies. Overall, our study demonstrates the crucial need for quantitative description of complete single-cell anatomy in cell-type classification, as single-cell morphological diversity reveals a plethora of ways in which different cell types and their individual members may contribute to the configuration and function of their respective circuits.


Assuntos
Encéfalo/citologia , Forma Celular , Neurônios/classificação , Neurônios/metabolismo , Análise de Célula Única , Atlas como Assunto , Biomarcadores/metabolismo , Encéfalo/anatomia & histologia , Encéfalo/embriologia , Encéfalo/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Neocórtex/anatomia & histologia , Neocórtex/citologia , Neocórtex/embriologia , Neocórtex/metabolismo , Neurogênese , Neuroglia/citologia , Neurônios/citologia , RNA-Seq , Reprodutibilidade dos Testes
3.
Nature ; 598(7879): 111-119, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34616062

RESUMO

The primary motor cortex (M1) is essential for voluntary fine-motor control and is functionally conserved across mammals1. Here, using high-throughput transcriptomic and epigenomic profiling of more than 450,000 single nuclei in humans, marmoset monkeys and mice, we demonstrate a broadly conserved cellular makeup of this region, with similarities that mirror evolutionary distance and are consistent between the transcriptome and epigenome. The core conserved molecular identities of neuronal and non-neuronal cell types allow us to generate a cross-species consensus classification of cell types, and to infer conserved properties of cell types across species. Despite the overall conservation, however, many species-dependent specializations are apparent, including differences in cell-type proportions, gene expression, DNA methylation and chromatin state. Few cell-type marker genes are conserved across species, revealing a short list of candidate genes and regulatory mechanisms that are responsible for conserved features of homologous cell types, such as the GABAergic chandelier cells. This consensus transcriptomic classification allows us to use patch-seq (a combination of whole-cell patch-clamp recordings, RNA sequencing and morphological characterization) to identify corticospinal Betz cells from layer 5 in non-human primates and humans, and to characterize their highly specialized physiology and anatomy. These findings highlight the robust molecular underpinnings of cell-type diversity in M1 across mammals, and point to the genes and regulatory pathways responsible for the functional identity of cell types and their species-specific adaptations.


Assuntos
Córtex Motor/citologia , Neurônios/classificação , Análise de Célula Única , Animais , Atlas como Assunto , Callithrix/genética , Epigênese Genética , Epigenômica , Feminino , Neurônios GABAérgicos/citologia , Neurônios GABAérgicos/metabolismo , Perfilação da Expressão Gênica , Glutamatos/metabolismo , Humanos , Hibridização in Situ Fluorescente , Masculino , Camundongos , Pessoa de Meia-Idade , Córtex Motor/anatomia & histologia , Neurônios/citologia , Neurônios/metabolismo , Especificidade de Órgãos , Filogenia , Especificidade da Espécie , Transcriptoma
4.
Nature ; 598(7879): 151-158, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34616067

RESUMO

The neocortex is disproportionately expanded in human compared with mouse1,2, both in its total volume relative to subcortical structures and in the proportion occupied by supragranular layers composed of neurons that selectively make connections within the neocortex and with other telencephalic structures. Single-cell transcriptomic analyses of human and mouse neocortex show an increased diversity of glutamatergic neuron types in supragranular layers in human neocortex and pronounced gradients as a function of cortical depth3. Here, to probe the functional and anatomical correlates of this transcriptomic diversity, we developed a robust platform combining patch clamp recording, biocytin staining and single-cell RNA-sequencing (Patch-seq) to examine neurosurgically resected human tissues. We demonstrate a strong correspondence between morphological, physiological and transcriptomic phenotypes of five human glutamatergic supragranular neuron types. These were enriched in but not restricted to layers, with one type varying continuously in all phenotypes across layers 2 and 3. The deep portion of layer 3 contained highly distinctive cell types, two of which express a neurofilament protein that labels long-range projection neurons in primates that are selectively depleted in Alzheimer's disease4,5. Together, these results demonstrate the explanatory power of transcriptomic cell-type classification, provide a structural underpinning for increased complexity of cortical function in humans, and implicate discrete transcriptomic neuron types as selectively vulnerable in disease.


Assuntos
Ácido Glutâmico/metabolismo , Neocórtex/citologia , Neocórtex/crescimento & desenvolvimento , Neurônios/citologia , Neurônios/metabolismo , Doença de Alzheimer , Animais , Forma Celular , Colágeno/metabolismo , Eletrofisiologia , Proteínas da Matriz Extracelular/metabolismo , Feminino , Humanos , Lisina/análogos & derivados , Masculino , Camundongos , Neocórtex/anatomia & histologia , Neurônios/classificação , Técnicas de Patch-Clamp , Transcriptoma
5.
Nature ; 573(7772): 61-68, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31435019

RESUMO

Elucidating the cellular architecture of the human cerebral cortex is central to understanding our cognitive abilities and susceptibility to disease. Here we used single-nucleus RNA-sequencing analysis to perform a comprehensive study of cell types in the middle temporal gyrus of human cortex. We identified a highly diverse set of excitatory and inhibitory neuron types that are mostly sparse, with excitatory types being less layer-restricted than expected. Comparison to similar mouse cortex single-cell RNA-sequencing datasets revealed a surprisingly well-conserved cellular architecture that enables matching of homologous types and predictions of properties of human cell types. Despite this general conservation, we also found extensive differences between homologous human and mouse cell types, including marked alterations in proportions, laminar distributions, gene expression and morphology. These species-specific features emphasize the importance of directly studying human brain.


Assuntos
Astrócitos/classificação , Evolução Biológica , Córtex Cerebral/citologia , Córtex Cerebral/metabolismo , Neurônios/classificação , Adolescente , Adulto , Idoso , Animais , Astrócitos/citologia , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Inibição Neural , Neurônios/citologia , Análise de Componente Principal , RNA-Seq , Análise de Célula Única , Especificidade da Espécie , Transcriptoma/genética , Adulto Jovem
8.
Nature ; 535(7612): 367-75, 2016 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-27409810

RESUMO

The transcriptional underpinnings of brain development remain poorly understood, particularly in humans and closely related non-human primates. We describe a high-resolution transcriptional atlas of rhesus monkey (Macaca mulatta) brain development that combines dense temporal sampling of prenatal and postnatal periods with fine anatomical division of cortical and subcortical regions associated with human neuropsychiatric disease. Gene expression changes more rapidly before birth, both in progenitor cells and maturing neurons. Cortical layers and areas acquire adult-like molecular profiles surprisingly late in postnatal development. Disparate cell populations exhibit distinct developmental timing of gene expression, but also unexpected synchrony of processes underlying neural circuit construction including cell projection and adhesion. Candidate risk genes for neurodevelopmental disorders including primary microcephaly, autism spectrum disorder, intellectual disability, and schizophrenia show disease-specific spatiotemporal enrichment within developing neocortex. Human developmental expression trajectories are more similar to monkey than rodent, although approximately 9% of genes show human-specific regulation with evidence for prolonged maturation or neoteny compared to monkey.


Assuntos
Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Macaca mulatta/genética , Transcriptoma , Envelhecimento/genética , Animais , Transtorno do Espectro Autista/genética , Encéfalo/citologia , Encéfalo/embriologia , Adesão Celular , Sequência Conservada , Feminino , Humanos , Deficiência Intelectual/genética , Masculino , Microcefalia/genética , Neocórtex/embriologia , Neocórtex/crescimento & desenvolvimento , Neocórtex/metabolismo , Transtornos do Neurodesenvolvimento/genética , Neurogênese/genética , Fatores de Risco , Esquizofrenia/genética , Análise Espaço-Temporal , Especificidade da Espécie , Transcrição Gênica/genética
9.
Nature ; 508(7495): 199-206, 2014 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-24695229

RESUMO

The anatomical and functional architecture of the human brain is mainly determined by prenatal transcriptional processes. We describe an anatomically comprehensive atlas of the mid-gestational human brain, including de novo reference atlases, in situ hybridization, ultra-high-resolution magnetic resonance imaging (MRI) and microarray analysis on highly discrete laser-microdissected brain regions. In developing cerebral cortex, transcriptional differences are found between different proliferative and post-mitotic layers, wherein laminar signatures reflect cellular composition and developmental processes. Cytoarchitectural differences between human and mouse have molecular correlates, including species differences in gene expression in subplate, although surprisingly we find minimal differences between the inner and outer subventricular zones even though the outer zone is expanded in humans. Both germinal and post-mitotic cortical layers exhibit fronto-temporal gradients, with particular enrichment in the frontal lobe. Finally, many neurodevelopmental disorder and human-evolution-related genes show patterned expression, potentially underlying unique features of human cortical formation. These data provide a rich, freely-accessible resource for understanding human brain development.


Assuntos
Encéfalo/metabolismo , Feto/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Transcriptoma , Anatomia Artística , Animais , Atlas como Assunto , Encéfalo/embriologia , Sequência Conservada/genética , Feto/citologia , Feto/embriologia , Redes Reguladoras de Genes/genética , Humanos , Camundongos , Neocórtex/embriologia , Neocórtex/metabolismo , Especificidade da Espécie
10.
Nature ; 489(7416): 391-399, 2012 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-22996553

RESUMO

Neuroanatomically precise, genome-wide maps of transcript distributions are critical resources to complement genomic sequence data and to correlate functional and genetic brain architecture. Here we describe the generation and analysis of a transcriptional atlas of the adult human brain, comprising extensive histological analysis and comprehensive microarray profiling of ∼900 neuroanatomically precise subdivisions in two individuals. Transcriptional regulation varies enormously by anatomical location, with different regions and their constituent cell types displaying robust molecular signatures that are highly conserved between individuals. Analysis of differential gene expression and gene co-expression relationships demonstrates that brain-wide variation strongly reflects the distributions of major cell classes such as neurons, oligodendrocytes, astrocytes and microglia. Local neighbourhood relationships between fine anatomical subdivisions are associated with discrete neuronal subtypes and genes involved with synaptic transmission. The neocortex displays a relatively homogeneous transcriptional pattern, but with distinct features associated selectively with primary sensorimotor cortices and with enriched frontal lobe expression. Notably, the spatial topography of the neocortex is strongly reflected in its molecular topography-the closer two cortical regions, the more similar their transcriptomes. This freely accessible online data resource forms a high-resolution transcriptional baseline for neurogenetic studies of normal and abnormal human brain function.


Assuntos
Anatomia Artística , Atlas como Assunto , Encéfalo/anatomia & histologia , Encéfalo/metabolismo , Perfilação da Expressão Gênica , Transcriptoma/genética , Adulto , Animais , Encéfalo/citologia , Calbindinas , Bases de Dados Genéticas , Dopamina/metabolismo , Saúde , Hipocampo/citologia , Hipocampo/metabolismo , Humanos , Hibridização In Situ , Internet , Macaca mulatta/anatomia & histologia , Macaca mulatta/genética , Masculino , Camundongos , Neocórtex/anatomia & histologia , Neocórtex/citologia , Neocórtex/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Densidade Pós-Sináptica/genética , RNA Mensageiro/análise , RNA Mensageiro/genética , Proteína G de Ligação ao Cálcio S100/genética , Especificidade da Espécie
11.
Development ; 140(22): 4633-44, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24154525

RESUMO

The neurogenic potential of the subgranular zone (SGZ) of the hippocampal dentate gyrus is likely to be regulated by molecular cues arising from its complex heterogeneous cellular environment. Through transcriptome analysis using laser microdissection coupled with DNA microarrays, in combination with analysis of genome-wide in situ hybridization data, we identified 363 genes selectively enriched in adult mouse SGZ. These genes reflect expression in the different constituent cell types, including progenitor and dividing cells, immature granule cells, astrocytes, oligodendrocytes and GABAergic interneurons. Similar transcriptional profiling in the rhesus monkey dentate gyrus across postnatal development identified a highly overlapping set of SGZ-enriched genes, which can be divided based on temporal profiles to reflect maturation of glia versus granule neurons. Furthermore, we identified a neurogenesis-related gene network with decreasing postnatal expression that is highly correlated with the declining number of proliferating cells in dentate gyrus over postnatal development. Many of the genes in this network showed similar postnatal downregulation in mouse, suggesting a conservation of molecular mechanisms underlying developmental and adult neurogenesis in rodents and primates. Conditional deletion of Sox4 and Sox11, encoding two neurogenesis-related transcription factors central in this network, produces a mouse with no hippocampus, confirming the crucial role for these genes in regulating hippocampal neurogenesis.


Assuntos
Perfilação da Expressão Gênica , Hipocampo/metabolismo , Macaca mulatta/genética , Neurogênese/genética , Animais , Animais Recém-Nascidos , Biomarcadores/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Redes Reguladoras de Genes , Genoma/genética , Hipocampo/citologia , Interneurônios/citologia , Interneurônios/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Família Multigênica , Oligodendroglia/citologia , Oligodendroglia/metabolismo , Fatores de Transcrição SOXC/genética , Fatores de Transcrição SOXC/metabolismo , Análise Espaço-Temporal , Transcrição Gênica
12.
bioRxiv ; 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38746199

RESUMO

Precision mapping techniques coupled with high resolution image acquisition of the mouse brain permit the study of the spatial organization of gene expression and their mutual interaction for a comprehensive view of salient structural/functional relationships. Such research is facilitated by standardized anatomical coordinate systems, such as the well-known Allen Common Coordinate Framework (AllenCCFv3), and the ability to spatially map to such standardized spaces. The Advanced Normalization Tools Ecosystem is a comprehensive open-source software toolkit for generalized quantitative imaging with applicability to multiple organ systems, modalities, and animal species. Herein, we illustrate the utility of ANTsX for generating precision spatial mappings of the mouse brain and potential subsequent quantitation. We describe ANTsX-based workflows for mapping domain-specific image data to AllenCCFv3 accounting for common artefacts and other confounds. Novel contributions include ANTsX functionality for velocity flow-based mapping spanning the spatiotemporal domain of a longitudinal trajectory which we apply to the Developmental Common Coordinate Framework. Additionally, we present an automated structural morphological pipeline for determining volumetric and cortical thickness measurements analogous to the well-utilized ANTsX pipeline for human neuroanatomical structural morphology which illustrates a general open-source framework for tailored brain parcellations.

13.
Mol Cell Proteomics ; 10(9): M110.006908, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21610103

RESUMO

The mitochondrial respiratory chain is comprised of four different protein complexes (I-IV), which are responsible for electron transport and generation of proton gradient in the mitochondrial intermembrane space. This proton gradient is then used by F0F1-ATP synthase (complex V) to produce ATP by oxidative phosphorylation. In this study, the respiratory complexes I, II, and III were affinity purified from Trypanosoma brucei procyclic form cells and their composition was determined by mass spectrometry. The results along with those that we previously reported for complexes IV and V showed that the respiratome of Trypanosoma is divergent because many of its proteins are unique to this group of organisms. The studies also identified two mitochondrial subunit proteins of respiratory complex IV that are encoded by edited RNAs. Proteomics data from analyses of complexes purified using numerous tagged component proteins in each of the five complexes were used to generate the first predicted protein-protein interaction network of the Trypanosoma brucei respiratory chain. These results provide the first comprehensive insight into the unique composition of the respiratory complexes in Trypanosoma brucei, an early diverged eukaryotic pathogen.


Assuntos
Transporte de Elétrons/genética , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Mapeamento de Interação de Proteínas/métodos , Proteoma/metabolismo , Proteômica/métodos , Proteínas de Protozoários/metabolismo , Trypanosoma brucei brucei , Animais , Sequência de Bases , Cromatografia de Afinidade , Complexo I de Transporte de Elétrons/química , Complexo I de Transporte de Elétrons/metabolismo , Complexo II de Transporte de Elétrons/química , Complexo II de Transporte de Elétrons/metabolismo , Complexo III da Cadeia de Transporte de Elétrons/química , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/química , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Humanos , Espectrometria de Massas , Mitocôndrias/genética , Proteínas Mitocondriais/genética , Dados de Sequência Molecular , Mapas de Interação de Proteínas/genética , Proteoma/química , Proteoma/genética , Proteínas de Protozoários/genética , Edição de RNA , Trypanosoma brucei brucei/química , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/metabolismo , Tripanossomíase Africana/parasitologia
14.
Science ; 382(6667): eadf0805, 2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37824667

RESUMO

Neocortical layer 1 (L1) is a site of convergence between pyramidal-neuron dendrites and feedback axons where local inhibitory signaling can profoundly shape cortical processing. Evolutionary expansion of human neocortex is marked by distinctive pyramidal neurons with extensive L1 branching, but whether L1 interneurons are similarly diverse is underexplored. Using Patch-seq recordings from human neurosurgical tissue, we identified four transcriptomic subclasses with mouse L1 homologs, along with distinct subtypes and types unmatched in mouse L1. Subclass and subtype comparisons showed stronger transcriptomic differences in human L1 and were correlated with strong morphoelectric variability along dimensions distinct from mouse L1 variability. Accompanied by greater layer thickness and other cytoarchitecture changes, these findings suggest that L1 has diverged in evolution, reflecting the demands of regulating the expanded human neocortical circuit.


Assuntos
Neocórtex , Animais , Humanos , Camundongos , Axônios/metabolismo , Interneurônios/metabolismo , Neocórtex/citologia , Neocórtex/metabolismo , Células Piramidais/metabolismo , Transcriptoma
15.
Science ; 382(6667): eadf6484, 2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37824669

RESUMO

Human cortex transcriptomic studies have revealed a hierarchical organization of γ-aminobutyric acid-producing (GABAergic) neurons from subclasses to a high diversity of more granular types. Rapid GABAergic neuron viral genetic labeling plus Patch-seq (patch-clamp electrophysiology plus single-cell RNA sequencing) sampling in human brain slices was used to reliably target and analyze GABAergic neuron subclasses and individual transcriptomic types. This characterization elucidated transitions between PVALB and SST subclasses, revealed morphological heterogeneity within an abundant transcriptomic type, identified multiple spatially distinct types of the primate-specialized double bouquet cells (DBCs), and shed light on cellular differences between homologous mouse and human neocortical GABAergic neuron types. These results highlight the importance of multimodal phenotypic characterization for refinement of emerging transcriptomic cell type taxonomies and for understanding conserved and specialized cellular properties of human brain cell types.


Assuntos
Neurônios GABAérgicos , Interneurônios , Neocórtex , Animais , Humanos , Camundongos , Fenômenos Eletrofisiológicos , Neurônios GABAérgicos/metabolismo , Ácido gama-Aminobutírico/metabolismo , Interneurônios/metabolismo , Neocórtex/citologia , Neocórtex/metabolismo , Técnicas de Patch-Clamp
16.
Res Sq ; 2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37292694

RESUMO

Alzheimer's disease (AD) is the most common cause of dementia in older adults. Neuropathological and imaging studies have demonstrated a progressive and stereotyped accumulation of protein aggregates, but the underlying molecular and cellular mechanisms driving AD progression and vulnerable cell populations affected by disease remain coarsely understood. The current study harnesses single cell and spatial genomics tools and knowledge from the BRAIN Initiative Cell Census Network to understand the impact of disease progression on middle temporal gyrus cell types. We used image-based quantitative neuropathology to place 84 donors spanning the spectrum of AD pathology along a continuous disease pseudoprogression score and multiomic technologies to profile single nuclei from each donor, mapping their transcriptomes, epigenomes, and spatial coordinates to a common cell type reference with unprecedented resolution. Temporal analysis of cell-type proportions indicated an early reduction of Somatostatin-expressing neuronal subtypes and a late decrease of supragranular intratelencephalic-projecting excitatory and Parvalbumin-expressing neurons, with increases in disease-associated microglial and astrocytic states. We found complex gene expression differences, ranging from global to cell type-specific effects. These effects showed different temporal patterns indicating diverse cellular perturbations as a function of disease progression. A subset of donors showed a particularly severe cellular and molecular phenotype, which correlated with steeper cognitive decline. We have created a freely available public resource to explore these data and to accelerate progress in AD research at SEA-AD.org.

17.
bioRxiv ; 2023 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-38168270

RESUMO

The mammalian brain is composed of diverse neuron types that play different functional roles. Recent single-cell RNA sequencing approaches have led to a whole brain taxonomy of transcriptomically-defined cell types, yet cell type definitions that include multiple cellular properties can offer additional insights into a neuron's role in brain circuits. While the Patch-seq method can investigate how transcriptomic properties relate to the local morphological and electrophysiological properties of cell types, linking transcriptomic identities to long-range projections is a major unresolved challenge. To address this, we collected coordinated Patch-seq and whole brain morphology data sets of excitatory neurons in mouse visual cortex. From the Patch-seq data, we defined 16 integrated morpho-electric-transcriptomic (MET)-types; in parallel, we reconstructed the complete morphologies of 300 neurons. We unified the two data sets with a multi-step classifier, to integrate cell type assignments and interrogate cross-modality relationships. We find that transcriptomic variations within and across MET-types correspond with morphological and electrophysiological phenotypes. In addition, this variation, along with the anatomical location of the cell, can be used to predict the projection targets of individual neurons. We also shed new light on infragranular cell types and circuits, including cell-type-specific, interhemispheric projections. With this approach, we establish a comprehensive, integrated taxonomy of excitatory neuron types in mouse visual cortex and create a system for integrated, high-dimensional cell type classification that can be extended to the whole brain and potentially across species.

18.
J Comp Neurol ; 530(1): 6-503, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34525221

RESUMO

Increasing interest in studies of prenatal human brain development, particularly using new single-cell genomics and anatomical technologies to create cell atlases, creates a strong need for accurate and detailed anatomical reference atlases. In this study, we present two cellular-resolution digital anatomical atlases for prenatal human brain at postconceptional weeks (PCW) 15 and 21. Both atlases were annotated on sequential Nissl-stained sections covering brain-wide structures on the basis of combined analysis of cytoarchitecture, acetylcholinesterase staining, and an extensive marker gene expression dataset. This high information content dataset allowed reliable and accurate demarcation of developing cortical and subcortical structures and their subdivisions. Furthermore, using the anatomical atlases as a guide, spatial expression of 37 and 5 genes from the brains, respectively, at PCW 15 and 21 was annotated, illustrating reliable marker genes for many developing brain structures. Finally, the present study uncovered several novel developmental features, such as the lack of an outer subventricular zone in the hippocampal formation and entorhinal cortex, and the apparent extension of both cortical (excitatory) and subcortical (inhibitory) progenitors into the prenatal olfactory bulb. These comprehensive atlases provide useful tools for visualization, segmentation, targeting, imaging, and interpretation of brain structures of prenatal human brain, and for guiding and interpreting the next generation of cell census and connectome studies.


Assuntos
Atlas como Assunto , Encéfalo/crescimento & desenvolvimento , Córtex Entorrinal/crescimento & desenvolvimento , Hipocampo/crescimento & desenvolvimento , Animais , Feminino , Humanos , Gravidez
19.
Science ; 375(6585): eabj5861, 2022 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-35271334

RESUMO

We present a unique, extensive, and open synaptic physiology analysis platform and dataset. Through its application, we reveal principles that relate cell type to synaptic properties and intralaminar circuit organization in the mouse and human cortex. The dynamics of excitatory synapses align with the postsynaptic cell subclass, whereas inhibitory synapse dynamics partly align with presynaptic cell subclass but with considerable overlap. Synaptic properties are heterogeneous in most subclass-to-subclass connections. The two main axes of heterogeneity are strength and variability. Cell subclasses divide along the variability axis, whereas the strength axis accounts for substantial heterogeneity within the subclass. In the human cortex, excitatory-to-excitatory synaptic dynamics are distinct from those in the mouse cortex and vary with depth across layers 2 and 3.


Assuntos
Neocórtex/fisiologia , Vias Neurais , Neurônios/fisiologia , Sinapses/fisiologia , Transmissão Sináptica , Adulto , Animais , Conjuntos de Dados como Assunto , Potenciais Pós-Sinápticos Excitadores , Feminino , Humanos , Potenciais Pós-Sinápticos Inibidores , Masculino , Camundongos , Camundongos Transgênicos , Modelos Neurológicos , Neocórtex/citologia , Lobo Temporal/citologia , Lobo Temporal/fisiologia , Córtex Visual/citologia , Córtex Visual/fisiologia
20.
PLoS Pathog ; 5(5): e1000436, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19436713

RESUMO

The mitochondrial F(0)F(1) ATP synthase is an essential multi-subunit protein complex in the vast majority of eukaryotes but little is known about its composition and role in Trypanosoma brucei, an early diverged eukaryotic pathogen. We purified the F(0)F(1) ATP synthase by a combination of affinity purification, immunoprecipitation and blue-native gel electrophoresis and characterized its composition and function. We identified 22 proteins of which five are related to F(1) subunits, three to F(0) subunits, and 14 which have no obvious homology to proteins outside the kinetoplastids. RNAi silencing of expression of the F(1) alpha subunit or either of the two novel proteins showed that they are each essential for the viability of procyclic (insect stage) cells and are important for the structural integrity of the F(0)F(1)-ATP synthase complex. We also observed a dramatic decrease in ATP production by oxidative phosphorylation after silencing expression of each of these proteins while substrate phosphorylation was not severely affected. Our procyclic T. brucei cells were sensitive to the ATP synthase inhibitor oligomycin even in the presence of glucose contrary to earlier reports. Hence, the two novel proteins appear essential for the structural organization of the functional complex and regulation of mitochondrial energy generation in these organisms is more complicated than previously thought.


Assuntos
ATPases Mitocondriais Próton-Translocadoras/fisiologia , Trypanosoma brucei brucei/enzimologia , Trifosfato de Adenosina/metabolismo , Animais , Inibidores Enzimáticos/farmacologia , Técnicas de Silenciamento de Genes , Glucose/metabolismo , Imunoprecipitação , ATPases Mitocondriais Próton-Translocadoras/antagonistas & inibidores , ATPases Mitocondriais Próton-Translocadoras/química , ATPases Mitocondriais Próton-Translocadoras/genética , Oligomicinas/farmacologia , Subunidades Proteicas/fisiologia , Proteínas de Protozoários/genética , Proteínas de Protozoários/fisiologia , Interferência de RNA , Azida Sódica/farmacologia , Trypanosoma brucei brucei/efeitos dos fármacos , Trypanosoma brucei brucei/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA