Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Am J Hum Genet ; 108(6): 1115-1125, 2021 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-34010605

RESUMO

Importin 8, encoded by IPO8, is a ubiquitously expressed member of the importin-ß protein family that translocates cargo molecules such as proteins, RNAs, and ribonucleoprotein complexes into the nucleus in a RanGTP-dependent manner. Current knowledge of the cargoes of importin 8 is limited, but TGF-ß signaling components such as SMAD1-4 have been suggested to be among them. Here, we report that bi-allelic loss-of-function variants in IPO8 cause a syndromic form of thoracic aortic aneurysm (TAA) with clinical overlap with Loeys-Dietz and Shprintzen-Goldberg syndromes. Seven individuals from six unrelated families showed a consistent phenotype with early-onset TAA, motor developmental delay, connective tissue findings, and craniofacial dysmorphic features. A C57BL/6N Ipo8 knockout mouse model recapitulates TAA development from 8-12 weeks onward in both sexes but most prominently shows ascending aorta dilatation with a propensity for dissection in males. Compliance assays suggest augmented passive stiffness of the ascending aorta in male Ipo8-/- mice throughout life. Immunohistological investigation of mutant aortic walls reveals elastic fiber disorganization and fragmentation along with a signature of increased TGF-ß signaling, as evidenced by nuclear pSmad2 accumulation. RT-qPCR assays of the aortic wall in male Ipo8-/- mice demonstrate decreased Smad6/7 and increased Mmp2 and Ccn2 (Ctgf) expression, reinforcing a role for dysregulation of the TGF-ß signaling pathway in TAA development. Because importin 8 is the most downstream TGF-ß-related effector implicated in TAA pathogenesis so far, it offers opportunities for future mechanistic studies and represents a candidate drug target for TAA.


Assuntos
Aneurisma da Aorta Torácica/etiologia , Mutação com Perda de Função , Perda de Heterozigosidade , Fenótipo , beta Carioferinas/genética , Adulto , Animais , Aneurisma da Aorta Torácica/metabolismo , Aneurisma da Aorta Torácica/patologia , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Linhagem , Transdução de Sinais , Síndrome , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo , Adulto Jovem , beta Carioferinas/metabolismo
2.
Dev Med Child Neurol ; 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38840441

RESUMO

First-line genetic investigations for rare neurological and developmental conditions have limitations in their ability to detect and characterize copy number variants (CNVs). Whole genome sequencing (WGS) offers potential advantages over other methods of CNV analysis. We aimed to demonstrate the utility of CNV detection using WGS through description of three clinical cases. WGS analysis was undertaken in three patients presenting to a national rare disease service, in whom a genetic aetiology remained uncertain after gene panel testing or microarray based comparative genomic hybridization (array CGH). In all three cases, WGS identified CNVs and confirmed zygosity and pathogenicity, resulting in genetic diagnoses of PRKN-related Parkinson disease, TAOK1-related neurodevelopmental disorder, and AP1G1-related Usmani-Riazuddin syndrome. This case series demonstrates the value of WGS analysis in identifying or better characterizing CNVs that were missed or deemed of uncertain significance using conventional methods of testing. Importantly, our approach facilitated accurate genetic diagnosis and counselling for the families involved.

3.
Mol Carcinog ; 56(4): 1290-1301, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27862318

RESUMO

Neuroblastoma is a childhood cancer in which many children still have poor outcomes, emphasising the need to better understand its pathogenesis. Despite recent genome-wide mutation analyses, many primary neuroblastomas do not contain recognizable driver mutations, implicating alternate molecular pathologies such as epigenetic alterations. To discover genes that become epigenetically deregulated during neuroblastoma tumorigenesis, we took the novel approach of comparing neuroblastomas to neural crest precursor cells, using genome-wide DNA methylation analysis. We identified 93 genes that were significantly differentially methylated of which 26 (28%) were hypermethylated and 67 (72%) were hypomethylated. Concentrating on hypermethylated genes to identify candidate tumor suppressor loci, we found the cell engulfment and adhesion factor gene MEGF10 to be epigenetically repressed by DNA hypermethylation or by H3K27/K9 methylation in neuroblastoma cell lines. MEGF10 showed significantly down-regulated expression in neuroblastoma tumor samples; furthermore patients with the lowest-expressing tumors had reduced relapse-free survival. Our functional studies showed that knock-down of MEGF10 expression in neuroblastoma cell lines promoted cell growth, consistent with MEGF10 acting as a clinically relevant, epigenetically deregulated neuroblastoma tumor suppressor gene. © 2016 The Authors. Molecular Carcinogenesis Published by Wiley Periodicals, Inc.


Assuntos
Metilação de DNA , Genes Supressores de Tumor , Proteínas de Membrana/genética , Neuroblastoma/genética , Linhagem Celular Tumoral , Criança , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Código das Histonas , Humanos
4.
Hum Mol Genet ; 22(1): 74-83, 2013 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-23042785

RESUMO

Although tumour suppressor gene hypermethylation is a universal feature of cancer cells, little is known about the necessary molecular triggers. Here, we show that Wilms' tumour 1 (WT1), a developmental master regulator that can also act as a tumour suppressor or oncoprotein, transcriptionally regulates the de novo DNA methyltransferase 3A (DNMT3A) and that cellular WT1 levels can influence DNA methylation of gene promoters genome-wide. Specifically, we demonstrate that depletion of WT1 by short-interfering RNAs leads to reduced DNMT3A in Wilms' tumour cells and human embryonal kidney-derived cell lines. Chromatin immunoprecipitation assays demonstrate WT1 recruitment to the DNMT3A promoter region and reporter assays confirm that WT1 directly transactivates DNMT3A expression. Consistent with this regulatory role, immunohistochemical analysis shows co-expression of WT1 and DNMT3A proteins in nuclei of blastemal cells in human fetal kidney and Wilms' tumours. Using genome-wide promoter methylation arrays, we show that human embryonal kidney cells over-expressing WT1 acquire DNA methylation changes at specific gene promoters where DNMT3A recruitment is increased, with hypermethylation being associated with silencing of gene expression. Elevated DNMT3A is also demonstrated at hypermethylated genes in Wilms' tumour cells, including a region of long-range epigenetic silencing. Finally, we show that depletion of WT1 in Wilms' tumour cells can lead to reactivation of gene expression from methylated promoters, such as TGFB2, a key modulator of epithelial-mesenchymal transitions. Collectively, our work defines a new regulatory modality for WT1 involving elicitation of epigenetic alterations which is most likely crucial to its functions in development and disease.


Assuntos
DNA (Citosina-5-)-Metiltransferases/metabolismo , Epigênese Genética , Regulação Enzimológica da Expressão Gênica , Proteínas WT1/fisiologia , Linhagem Celular , Imunoprecipitação da Cromatina , DNA (Citosina-5-)-Metiltransferases/genética , DNA Metiltransferase 3A , Inativação Gênica , Humanos , Regiões Promotoras Genéticas , Transcrição Gênica , Tumor de Wilms/genética
5.
PLoS Genet ; 5(11): e1000745, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19956686

RESUMO

Wilms' tumour (WT) is a pediatric tumor of the kidney that arises via failure of the fetal developmental program. The absence of identifiable mutations in the majority of WTs suggests the frequent involvement of epigenetic aberrations in WT. We therefore conducted a genome-wide analysis of promoter hypermethylation in WTs and identified hypermethylation at chromosome 5q31 spanning 800 kilobases (kb) and more than 50 genes. The methylated genes all belong to alpha-, beta-, and gamma-protocadherin (PCDH) gene clusters (Human Genome Organization nomenclature PCDHA@, PCDHB@, and PCDHG@, respectively). This demonstrates that long-range epigenetic silencing (LRES) occurs in developmental tumors as well as in adult tumors. Bisulfite polymerase chain reaction analysis showed that PCDH hypermethylation is a frequent event found in all Wilms' tumor subtypes. Hypermethylation is concordant with reduced PCDH expression in tumors. WT precursor lesions showed no PCDH hypermethylation, suggesting that de novo PCDH hypermethylation occurs during malignant progression. Discrete boundaries of the PCDH domain are delimited by abrupt changes in histone modifications; unmethylated genes flanking the LRES are associated with permissive marks which are absent from methylated genes within the domain. Silenced genes are marked with non-permissive histone 3 lysine 9 dimethylation. Expression analysis of embryonic murine kidney and differentiating rat metanephric mesenchymal cells demonstrates that Pcdh expression is developmentally regulated and that Pcdhg@ genes are expressed in blastemal cells. Importantly, we show that PCDHs negatively regulate canonical Wnt signalling, as short-interfering RNA-induced reduction of PCDHG@ encoded proteins leads to elevated beta-catenin protein, increased beta-catenin/T-cell factor (TCF) reporter activity, and induction of Wnt target genes. Conversely, over-expression of PCDHs suppresses beta-catenin/TCF-reporter activity and also inhibits colony formation and growth of cancer cells in soft agar. Thus PCDHs are candidate tumor suppressors that modulate regulatory pathways critical in development and disease, such as canonical Wnt signaling.


Assuntos
Caderinas/genética , Cromossomos Humanos Par 5/genética , Epigênese Genética , Inativação Gênica , Família Multigênica , Tumor de Wilms/genética , Animais , Metilação de DNA , Regulação da Expressão Gênica , Estudo de Associação Genômica Ampla , Humanos , Camundongos , Regiões Promotoras Genéticas/genética , Protocaderinas , Ratos , Transdução de Sinais/genética , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , beta Catenina/genética
6.
Hum Mutat ; 30(10): 1412-8, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19701947

RESUMO

Multiple rare nonsynonymous variants in APC predispose to colorectal adenomas. The mechanisms through which such variants act have been unclear, but it has been proposed that a specific ("just-right") level of beta-catenin signaling is required for colorectal tumorigenesis. This appears to be mediated by selection for APC genotypes that retain one, or rarely two, 20 amino acid beta-catenin downregulating repeats (20AARs). We investigated the mechanism through which the variant p.Glu1317Gln (c.3949G>C) contributes to colorectal tumorigenesis. We compared the patterns of somatic APC mutations in tumors from patients with attenuated familial adenomatous polyposis (AFAP) who did, or did not, coinherit p.Glu1317Gln with their AFAP-causing APC mutations. Only 8.2% (4/49) of tumors carrying p.Glu1317Gln had somatic mutations predicted to result in mutant polypeptides retaining a single 20AAR, compared to 62.1% (36/58) of those which did not carry this variant (P=5.64 x 10(-9)). Furthermore, tumors with p.Glu1317Gln often carried somatic mutations that were unusually early or late (downstream of the second 20AAR) in the APC open reading frame. These data support a novel mechanism in which p.Glu1317Gln in combination with other weak mutant APC alleles (generating polypepetides with zero, two, or three 20AARs) can provide the necessary growth advantage for colorectal tumorigenesis.


Assuntos
Adenoma/genética , Neoplasias Colorretais/genética , Genes APC , Mutação em Linhagem Germinativa , Sequência de Bases , Cromatografia Líquida de Alta Pressão , Primers do DNA , Predisposição Genética para Doença , Humanos , Reação em Cadeia da Polimerase
7.
RNA ; 13(12): 2287-99, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17940140

RESUMO

Many mammalian genes contain overlapping antisense RNAs, but the functions and mechanisms of action of these transcripts are mostly unknown. WT1 is a well-characterized developmental gene that is mutated in Wilms' tumor (WT) and acute myeloid leukaemia (AML) and has an antisense transcript (WT1-AS), which we have previously found to regulate WT1 protein levels. In this study, we show that WT1-AS is present in multiple spliceoforms that are usually expressed in parallel with WT1 RNA in human and mouse tissues. We demonstrate that the expression of WT1-AS correlates with methylation of the antisense regulatory region (ARR) in WT1 intron 1, displaying imprinted monoallelic expression in normal kidney and loss of imprinting in WT. However, we find no evidence for imprinting of mouse Wt1-as. WT1-AS transcripts are exported into the cytoplasm and form heteroduplexes with WT1 mRNA in the overlapping region in WT1 exon 1. In AML, there is often abnormal splicing of WT1-AS, which may play a role in the development of this malignancy. These results show that WT1 encodes conserved antisense RNAs that may have an important regulatory role in WT1 expression via RNA:RNA interactions, and which can become deregulated by a variety of mechanisms in cancer.


Assuntos
Processamento Alternativo , Proteínas de Neoplasias/genética , RNA Antissenso/genética , RNA Neoplásico/genética , Transcrição Gênica , Proteínas WT1/genética , Animais , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Renais/genética , Leucemia Mieloide Aguda/genética , Camundongos , Mutação , Tumor de Wilms/genética
8.
Clin Cancer Res ; 14(23): 7635-44, 2008 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-19047088

RESUMO

PURPOSE: Perilobar nephrogenic rests (PLNRs) are abnormally persistent foci of embryonal immature blastema that have been associated with dysregulation at the 11p15 locus by genetic/epigenetic means and are thought to be precursor lesions of Wilms tumor. The precise genomic events are, however, largely unknown. EXPERIMENTAL DESIGN: We used array comparative genomic hybridization to analyze a series of 50 PLNRs and 25 corresponding Wilms tumors characterized for 11p15 genetic/epigenetic alterations and insulin-like growth factor-II expression. RESULTS: The genomic profiles of PLNRs could be subdivided into three categories: those with no copy number changes (22 of 50, 44%); those with single, whole chromosome alterations (8 of 50, 16%); and those with multiple gains/losses (20 of 50, 40%). The most frequent aberrations included 1p- (7 of 50, 14%) +18 (6 of 50, 12%), +13 (5 of 50, 10%), and +12 (3 of 50, 6%). For the majority (19 of 25, 76%) of cases, the rest harbored a subset of the copy number changes in the associated Wilms tumor. We identified a temporal order of genomic changes, which occur during the insulin-like growth factor-II/PLNR pathway of Wilms tumorigenesis, with large-scale chromosomal alterations such as 1p-, +12, +13, and +18 regarded as "early" events. In some of the cases (24%), the PLNRs harbored large-scale copy number changes not observed in the concurrent Wilms tumor, including +10p, +14q, and +18. CONCLUSIONS: These data suggest that although the evidence for PLNRs as precursors is compelling, not all lesions must necessarily undergo malignant transformation.


Assuntos
Fator de Crescimento Insulin-Like II/metabolismo , Neoplasias Renais/genética , Lesões Pré-Cancerosas/genética , Tumor de Wilms/genética , Sequência de Bases , Hibridização Genômica Comparativa , Metilação de DNA , Dosagem de Genes , Humanos , Neoplasias Renais/metabolismo , Perda de Heterozigosidade , Dados de Sequência Molecular , Lesões Pré-Cancerosas/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Tumor de Wilms/metabolismo
9.
Sci Rep ; 9(1): 18934, 2019 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-31831790

RESUMO

To discover epigenetic changes that may underly neuroblastoma pathogenesis, we identified differentially methylated genes in neuroblastoma cells compared to neural crest cells, the presumptive precursors cells for neuroblastoma, by using genome-wide DNA methylation analysis. We previously described genes that were hypermethylated in neuroblastoma; in this paper we report on 67 hypomethylated genes, which were filtered to select genes that showed transcriptional over-expression and an association with poor prognosis in neuroblastoma, highlighting GATA3 for detailed studies. Specific methylation assays confirmed the hypomethylation of GATA3 in neuroblastoma, which correlated with high expression at both the RNA and protein level. Demethylation with azacytidine in cultured sympathetic ganglia cells led to increased GATA3 expression, suggesting a mechanistic link between GATA3 expression and DNA methylation. Neuroblastomas that had completely absent GATA3 methylation and/or very high levels of protein expression, were associated with poor prognosis. Knock-down of GATA3 in neuroblastoma cells lines inhibited cell proliferation and increased apoptosis but had no effect on cellular differentiation. These results identify GATA3 as an epigenetically regulated component of the neuroblastoma transcriptional control network, that is essential for neuroblastoma proliferation. This suggests that the GATA3 transcriptional network is a promising target for novel neuroblastoma therapies.


Assuntos
Metilação de DNA , DNA de Neoplasias/metabolismo , Epigênese Genética , Fator de Transcrição GATA3/biossíntese , Regulação Neoplásica da Expressão Gênica , Proteínas de Neoplasias/biossíntese , Neuroblastoma/metabolismo , Linhagem Celular Tumoral , DNA de Neoplasias/genética , Fator de Transcrição GATA3/genética , Humanos , Proteínas de Neoplasias/genética , Neuroblastoma/diagnóstico , Neuroblastoma/genética , Neuroblastoma/patologia , Prognóstico
10.
Oncogene ; 22(9): 1371-80, 2003 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-12618763

RESUMO

Wilms' tumour (WT) has a diverse and complex molecular aetiology, with several different loci identified by cytogenetic and molecular analyses. One such locus is on chromosome 7p, where cytogenetic abnormalities and loss of heterozygosity (LOH) indicate the presence of a Wilms' tumour suppressor gene. In order to isolate a candidate gene for this locus, we have characterized the breakpoint regions at a novel constitutional chromosome translocation (t(1;7)(q42;p15)), found in a child with WT and skeletal abnormalities. We identified two genes that were interrupted by the translocation: the parathyroid hormone-responsive B1 gene (PTH-B1) at 7p and obscurin at 1q. With no evidence for LOH at 1q42, we focused on the characterization of PTH-B1. We detected novel alternately spliced isoforms of PTH-B1, which were expressed in a wide range of adult and foetal tissues. Importantly, expression of two isoforms were disrupted in the WT of the t(1;7) patient. We also identified an additional splice isoform expressed only in 7p LOH tumours. The disruption of PTH-B1 by the t(1;7), together with aberrant splicing in sporadic WTs, suggests that PTH-B1 is a candidate for the 7p Wilms' tumour suppressor gene.


Assuntos
Cromossomos Humanos Par 1/genética , Cromossomos Humanos Par 7/genética , Genes Supressores de Tumor , Neoplasias Renais/genética , Proteínas/genética , Translocação Genética , Tumor de Wilms/genética , Processamento Alternativo , Sequência de Aminoácidos , Sequência de Bases , Criança , Quebra Cromossômica , Mapeamento Cromossômico , Cromossomos Artificiais de Levedura , Proteínas do Citoesqueleto , Etiquetas de Sequências Expressas , Proteínas Fetais/análise , Fatores de Troca do Nucleotídeo Guanina/genética , Humanos , Rim/anormalidades , Rim/embriologia , Perda de Heterozigosidade , Dados de Sequência Molecular , Monossomia , Proteínas Musculares/genética , Proteínas de Neoplasias , Especificidade de Órgãos , Isoformas de Proteínas/genética , Proteínas Serina-Treonina Quinases , Proteínas/análise , Proteínas/química , Fatores de Troca de Nucleotídeo Guanina Rho , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Trissomia
11.
Hum Mutat ; 26(2): 165, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16010685

RESUMO

Despite the availability of numerous technologies for detecting mutations, only a few have been formatted for automated mutation calling. Here, we evaluate the utility of the Transgenomic Navigator software to facilitate automated detection of aberrant denaturing high performance liquid chromatography (dHPLC) elution profiles. We used dHPLC to identify germline variants in MSH6, NEIL2, NEIL3, and OGG1 in 172 patients with multiple colorectal adenomas. 3,747 dHPLC profiles were analysed with the Navigator software using three levels of analysis, each differing in the degree of operator input. 43.5% (60/138) and 98.3% (59/60) of products with profiles distinct from wild type ('outliers') harboured novel variants under Level 1 and Levels 2/3 analysis conditions, respectively. We also assessed the utility of the software to rapidly detect samples carrying common polymorphisms by analysing regions of the genes that harbour polymorphisms with minor allele frequencies between 8 and 40%, therein analysing 2,784 profiles. We showed that 1573/1612 (97.6%) and 1137/1172 (97.0%) of PCR products were correctly classified as wild-type and variant, respectively (Level 3 analysis conditions). Finally, we assessed the utility of the software to detect novel variants in fragments that also harboured common polymorphisms and showed that 59/61 (96.7%) of products with profiles outlying both the wild type and polymorphism groups harboured novel variants. We conclude that the Navigator software provides an excellent tool for rapid discrimination of aberrant dHPLC elution profiles that harbour sequence variants.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Biologia Computacional/métodos , Análise Mutacional de DNA/métodos , Genoma , Humanos , Desnaturação de Ácido Nucleico , Polimorfismo Genético , Análise de Sequência de DNA , Software , Transgenes
12.
Cancer Res ; 68(2): 358-63, 2008 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-18199528

RESUMO

It has been proposed that multiple rare variants in numerous genes collectively account for a substantial proportion of multifactorial inherited predisposition to a variety of diseases, including colorectal adenomas (CRA). We have studied this hypothesis by sequencing the adenomatous polyposis coli (APC) gene in 691 unrelated North American patients with CRAs and 969 matched healthy controls. Rare inherited nonsynonymous variants of APC were significantly overrepresented in patients who did not carry conventional pathogenic mutations in the APC or MutY homologue genes [non-familial adenomatous polyposis (FAP) non-MUTYH-associated polyposis (MAP) patients; 81 of 480, 16.9%] compared with patients with FAP or MAP (20 of 211, 9.5%, P = 0.0113), and this overrepresentation was highest in those non-FAP non-MAP patients with 11 to 99 CRAs (30 of 161, 18.6%, P = 0.0103). Furthermore, significantly more non-FAP non-MAP patients carried rare nonsynonymous variants in the functionally important beta-catenin down-regulating domain compared with healthy controls (32 of 480 versus 37 of 969, P = 0.0166). In silico analyses predicted that approximately 46% of the 61 different variants identified were likely to affect function, and upon testing, 7 of 16 nonsynonymous variants were shown to alter beta-catenin-regulated transcription in vitro. These data suggest that multiple rare nonsynonymous variants in APC play a significant role in predisposing to CRAs.


Assuntos
Adenoma/genética , Proteína da Polipose Adenomatosa do Colo/genética , Neoplasias Colorretais/genética , Predisposição Genética para Doença , Polimorfismo de Nucleotídeo Único , Adulto , Estudos de Casos e Controles , Análise Mutacional de DNA , Regulação para Baixo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único/fisiologia , Estrutura Terciária de Proteína , beta Catenina/metabolismo
13.
Hum Mol Genet ; 16(3): 343-54, 2007 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-17210670

RESUMO

We have shown previously that AWT1 and WT1-AS are functionally imprinted in human kidney. In the adult kidney, expression of both transcripts is restricted to the paternal allele, with the silent maternal allele retaining methylation at the WT1 antisense regulatory region (WT1 ARR). Here, we report characterization of the WT1 ARR differentially methylated region and show that it contains a transcriptional silencer element acting on both the AWT1 and WT1-AS promoters. DNA methylation of the silencer results in increased transcriptional repression, and the silencer is also shown to be an in vitro and in vivo target site for the imprinting regulator protein CTCF. Binding of CTCF is methylation-sensitive and limited to the unmethylated silencer. Potentiation of the silencer activity is demonstrated after CTCF protein is knocked down, suggesting a novel silencer-blocking activity for CTCF. We also report assessment of WT1 ARR methylation in developmental and tumour tissues, including the first analysis of Wilms' tumour precursor lesions, nephrogenic rests. Nephrogenic rests show increases in methylation levels relative to foetal kidney and reductions relative to the adult kidney, together with biallelic expression of AWT1 and WT1-AS. Notably, the methylation status of CpG residues within the CTCF target site appears to distinguish monoallelic and biallelic expression states. Our data suggest that failure of methylation spreading at the WT1 ARR early in renal development, followed by imprint erasure, occurs during Wilms' tumourigenesis. We propose a model wherein imprinting defects at chromosome 11p13 may contribute to Wilms' tumourigenesis.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Epigênese Genética , Genes do Tumor de Wilms , Impressão Genômica , Neoplasias Renais/genética , Proteínas Repressoras/metabolismo , Elementos Silenciadores Transcricionais/fisiologia , Tumor de Wilms/genética , Fator de Ligação a CCCTC , Células Cultivadas , Metilação de DNA , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Rim/embriologia , Rim/metabolismo , Modelos Biológicos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
14.
Neoplasia ; 9(11): 970-8, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18030365

RESUMO

Wilms tumors (WTs) have a complex etiology, displaying genetic and epigenetic changes, including loss of imprinting (LOI) and tumor suppressor gene silencing. To identify new regions of epigenetic perturbation in WTs, we screened kidney and tumor DNA using CpG island (CGI) tags associated with cancer-specific DNA methylation changes. One such tag corresponded to a paralog of the glioma pathogenesis-related 1/related to testis-specific, vespid, and pathogenesis proteins 1 (GLIPR1/RTVP-1) gene, previously reported to be a tumor-suppressor gene silenced by hypermethylation in prostate cancer. Here we report methylation analysis of the GLIPR1/RTVP-1 gene in WTs and normal fetal and pediatric kidneys. Hypomethylation of the GLIPR1/RTVP-1 5'-region in WTs relative to normal tissue is observed in 21/24 (87.5%) of WTs analyzed. Quantitative analysis of GLIPR1/RTVP-1 expression in 24 WTs showed elevated transcript levels in 16/24 WTs (67%), with 12 WTs displaying in excess of 20-fold overexpression relative to fetal kidney (FK) control samples. Immunohistochemical analysis of FK and WT corroborates the RNA expression data and reveals high GLIPR1/RTVP-1 in WT blastemal cells together with variable levels in stromal and epithelial components. Hypomethylation is also evident in the WT precursor lesions and nephrogenic rests (NRs), supporting a role for GLIPR1/RTVP-1 deregulation early in Wilms tumorigenesis. Our data show that, in addition to gene dosage changes arising from LOI and hypermethylation-induced gene silencing, gene activation resulting from hypomethylation is also prevalent in WTs.


Assuntos
Metilação de DNA , Regulação Neoplásica da Expressão Gênica , Neoplasias Renais/genética , Proteínas de Neoplasias/genética , Proteínas do Tecido Nervoso/genética , Tumor de Wilms/genética , Adolescente , Adulto , Idoso , Azacitidina/análogos & derivados , Azacitidina/uso terapêutico , Sequência de Bases , Criança , Decitabina , Feminino , Dosagem de Genes , Inativação Gênica , Genes Supressores de Tumor , Humanos , Imuno-Histoquímica , Masculino , Proteínas de Membrana , Pessoa de Meia-Idade , Dados de Sequência Molecular , RNA Mensageiro/análise , Ativação Transcricional
15.
Hum Mol Genet ; 13(4): 405-15, 2004 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-14681303

RESUMO

The Wilms' tumour suppressor gene, WT1, is mutated in 10-15% of Wilms' tumours and encodes zinc-finger proteins with diverse cellular functions critical for nephrogenesis, genitourinary development, haematopoiesis and sex determination. Here we report that a novel alternative WT1 transcript, AWT1, is co-expressed with WT1 in renal and haematopoietic cells. AWT1 maintains WT1 exonic structure between exons 2 and 10, but deploys a new 5'-exon located in intron 1 of WT1. The AWT1 gene predicts proteins of approximately 33 kDa, comprising all exon 5 and exon 9 splicing variants previously characterized for WT1. Although WT1 is not genomically imprinted in kidney, we have previously shown monoallelic expression of a WT1 antisense transcript (WT1-AS) that is consistent with genomic imprinting. Here we demonstrate that both WT1-AS and the novel AWT1 transcript are imprinted in normal kidney with expression confined to the paternal allele. Wilms' tumours display biallelic AWT1 expression, indicating relaxation of imprinting of AWT1 in a subset of WTs. Our findings define human chromosome 11p13 as a new imprinted locus, and also suggest a possible molecular basis for the strong bias of paternal allele mutations and variable penetrance observed in syndromes with inherited WT1 mutations.


Assuntos
Processamento Alternativo/genética , Impressão Genômica , Perda de Heterozigosidade/genética , Proteínas WT1/genética , Tumor de Wilms/genética , Sequência de Bases , Células Cultivadas , Éxons/genética , Humanos , Íntrons/genética , Rim/metabolismo , Neoplasias Renais/genética , Neoplasias Renais/metabolismo , Metilação , Dados de Sequência Molecular , Mutação/genética , Proteínas WT1/metabolismo , Tumor de Wilms/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA