Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Assunto principal
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Appl Radiat Isot ; 190: 110508, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36283328

RESUMO

111Ag-perturbed angular correlation of γ-rays (PAC) spectroscopy provides information on the nuclear quadrupole interactions, and thereby on the local structure and dynamics of the silver ion binding site. Brownian rotational motion, i.e. rotational diffusion, of 111Ag-labeled molecules will significantly affect the PAC spectra. Here we illustrate this effect, by simulating 111Ag PAC spectra for 111Ag-labeled molecules with molecular masses spanning from 102 to 106 g/mol, reflecting a span from fast (small molecules) to slow (large molecules) rotational diffusion on the PAC time scale. The simulated spectra are compared to 111Ag-PAC data obtained from a pilot study involving 111Ag(I) bound to a designed chelator exhibiting fast reorientation in solution, as well as to 111Ag-labeled species formed by 111Ag(I) in human serum, exhibiting slow (or no) reorientation on the PAC time scale. The simulated and experimental data illustrate typical PAC signals that are likely to be observed in vivo, when following the fate of 111Ag-labeled compounds. Potential in vivo applications are stability studies of 111Ag-radiopharmaceuticals, dissociation studies of 111Ag from the labeled molecule followed by binding to another (bio)molecule, or binding of 111Ag-labeled probes to larger carriers such as proteins.


Assuntos
Cádmio , Humanos , Projetos Piloto , Análise Espectral/métodos , Sítios de Ligação , Raios gama
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA