Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Science ; 381(6658): 677-681, 2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37561852

RESUMO

Moiré superlattices in twisted two-dimensional materials have generated tremendous excitement as a platform for achieving quantum properties on demand. However, the moiré pattern is highly sensitive to the interlayer atomic registry, and current assembly techniques suffer from imprecise control of the average twist angle, spatial inhomogeneity in the local twist angle, and distortions caused by random strain. We manipulated the moiré patterns in hetero- and homobilayers through in-plane bending of monolayer ribbons, using the tip of an atomic force microscope. This technique achieves continuous variation of twist angles with improved twist-angle homogeneity and reduced random strain, resulting in moiré patterns with tunable wavelength and ultralow disorder. Our results may enable detailed studies of ultralow-disorder moiré systems and the realization of precise strain-engineered devices.

2.
ACS Omega ; 6(8): 5679-5688, 2021 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-33681607

RESUMO

Graphene has received much attention as a supercapacitor electrode material due to its chemical inertness in preventing reaction with electrolytes and the large surface area due to its two-dimensional nature. However, when graphene sheets are processed into electrodes, they tend to stack together and form a turbostratic graphite material with a much reduced surface area relative to the total surface area of individual graphene sheets. Separately, electrochemical exfoliation of graphite is one method of producing single-layer graphene, which is often used to produce graphene for supercapacitor electrodes, although such exfoliated graphene still leads to reduced surface areas due to stacking during electrode fabrication. To utilize the large surface area of graphene, graphene must be exfoliated in situ within a supercapacitor device after the device fabrication. However, graphitic electrodes are typically destroyed upon exfoliation, which is largely due to the loss of electrical connectivity among small exfoliated graphene flakes. Here, we report successful in situ exfoliation of graphene nanostripes, a type of quasi-one-dimensional graphene nanomaterial with large length-to-width aspect ratios, as the anode material in supercapacitors. We find that the in situ exfoliation leads to over 400% enhancement in capacitance as the result of retaining the electrical connectivity among exfoliated quasi-one-dimensional graphene nanostripes in addition to increasing the total surface area, paving ways to fully realizing the benefit of graphene electrodes in supercapacitor applications.

3.
ACS Appl Mater Interfaces ; 13(35): 41886-41894, 2021 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-34431654

RESUMO

Nanostructuring allows altering of the electronic and photonic properties of two-dimensional (2D) materials. The efficiency, flexibility, and convenience of top-down lithography processes are, however, compromised by nanometer-scale edge roughness and resolution variability issues, which especially affect the performance of 2D materials. Here, we study how dry anisotropic etching of multilayer 2D materials with sulfur hexafluoride (SF6) may overcome some of these issues, showing results for hexagonal boron nitride (hBN), tungsten disulfide (WS2), tungsten diselenide (WSe2), molybdenum disulfide (MoS2), and molybdenum ditelluride (MoTe2). Scanning electron microscopy and transmission electron microscopy reveal that etching leads to anisotropic hexagonal features in the studied transition metal dichalcogenides, with the relative degree of anisotropy ranked as: WS2 > WSe2 > MoTe2 ∼ MoS2. Etched holes are terminated by zigzag edges while etched dots (protrusions) are terminated by armchair edges. This can be explained by Wulff constructions, taking the relative stabilities of the edges and the AA' stacking order into account. Patterns in WS2 are transferred to an underlying graphite layer, demonstrating a possible use for creating sub-10 nm features. In contrast, multilayer hBN exhibits no lateral anisotropy but shows consistent vertical etch angles, independent of crystal orientation. Using an hBN crystal as the base, ultrasharp corners can be created in lithographic patterns, which are then transferred to a graphite crystal underneath. We find that the anisotropic SF6 reactive ion etching process makes it possible to downsize nanostructures and obtain smooth edges, sharp corners, and feature sizes significantly below the resolution limit of electron beam lithography. The nanostructured 2D materials can be used themselves or as etch masks to pattern other nanomaterials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA